Skip to main content

Advertisement

Log in

New anabolic therapies for osteoporosis

  • IM - REVIEW
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Osteoporosis is characterized by low bone mass and qualitative structural abnormalities of bone tissue, leading to increased bone fragility that results in fractures. Pharmacological therapy is aimed at decreasing the risk of fracture, mainly correcting the imbalance between bone resorption and formation at the level of bone remodeling units. Anabolic therapy has the capability to increase bone mass to a greater extent than traditional antiresorptive agents. The only currently available drug licensed is parathyroid hormone 1–34 (teriparatide); new drugs are on the horizon, targeting the stimulation of bone formation, and therefore improving bone mass, structure and ultimately skeletal strength. These are represented by abaloparatide (a 34-amino acid peptide which incorporates critical N-terminal residues, shared by parathyroid hormone and parathyroid hormone-related protein, followed by sequences unique to the latter protein) and romosozumab (an antibody to sclerostin). In the future, the availability of new anabolic treatment will allow a more extensive utilization of additive and sequential approach, with the goal of both prolonging the period of treatment and, more importantly, avoiding the side effects consequent to long-term use of traditional drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(data are redrawn from Tarantino U)

Fig. 2

Similar content being viewed by others

References

  1. Papapoulos SE (2015) Anabolic bone therapies in 2014: new bone-forming treatments for osteoporosis. Nat Rev Endocrinol 11:69–70. doi:10.1038/nrendo.2014.214

    Article  CAS  PubMed  Google Scholar 

  2. Freemantle N, Cooper C, Roux C et al (2010) Baseline observations from the POSSIBLE EU® study: characteristics of postmenopausal women receiving bone loss medications. Arch Osteoporos 5:61–72. doi:10.1007/s11657-010-0035-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Holloway KL, Henry MJ, Brennan-Olsen SL et al (2016) Non-hip and non-vertebral fractures: the neglected fracture sites. Osteoporos Int 27:905–913. doi:10.1007/s00198-015-3322-8

    Article  CAS  PubMed  Google Scholar 

  4. Hernlund E, Svedbom A, Ivergård M et al (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden: a report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8(1–2):136. doi:10.1007/s11657-013-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Romagnoli E, Carnevale V, Nofroni I et al (2004) Quality of life in ambulatory postmenopausal women: the impact of reduced bone mineral density and subclinical fractures. Osteoporos Int 15:975–980. doi:10.1007/s00198-004-1633-2

    Article  PubMed  Google Scholar 

  6. Romagnoli E, Carnevale V, Calandra P et al (2003) Impact of fractures on health care in a major university hospital in Rome. Aging Clin Exp Res 15:505–511. doi:10.1007/BF03327374

    Article  PubMed  Google Scholar 

  7. Kanis JA, Cooper C, Rizzoli R et al (2017) Identification and management of patients at increased risk of osteoporotic fracture: outcomes of an ESCEO expert consensus meeting. Osteoporos Int 28(7):2023–2034. doi:10.1007/s00198-017-4009-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Salked G, Cameron ID, Cumming RG et al (2000) Quality of life related to fear of falling and hip fracture in older women: a time trade off study. Br Med J 320(7231):341–346

    Article  Google Scholar 

  9. Pfeifer M, Sinaki M, Geusens P et al (2004) Musculoskeletal rehabilitation in osteoporosis: a review. J Bone Miner Res 19:1208–1214. doi:10.1359/JBMR.040507

    Article  PubMed  Google Scholar 

  10. Boonen S, Lips P, Bouillon R et al (2007) Need for additional calcium to reduce the risk of hip fracture with vitamin D supplementation: evidence from a comparative metaanalysis of randomized controlled trials. J Clin Endocrinol Metab 92(4):1415–1423. doi:10.1210/jc.2006-1404

    Article  CAS  PubMed  Google Scholar 

  11. Romagnoli E, Pepe J, Piemonte S et al (2013) Management of endocrine disease: value and limitations of assessing vitamin D nutritional status and advised levels of vitamin D supplementation. Eur J Endocrinol 169:59–69. doi:10.1530/EJE-13-0435

    Article  Google Scholar 

  12. Cipriani C, Pepe J, Piemonte S et al (2014) Vitamin D and its relationship with obesity and muscle. Int J Endocrinol. doi:10.1155/2014/841248

    Google Scholar 

  13. Murad MH, Drake MT, Mullan RJ et al (2012) Comparative Effectiveness of drug treatments to prevent fragility fractures: a systematic review and network meta-analysis. J Clin Endocrinol Metab 97(6):1871–1880. doi:10.1210/jc.2011-3060

    Article  CAS  PubMed  Google Scholar 

  14. Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20:177–184. doi:10.1359/JBMR.041114

    Article  CAS  PubMed  Google Scholar 

  15. Minisola S (2014) Romosozumab: from basic to clinical aspects. Expert Opin Biol Ther 14(9):1225–1228. doi:10.1517/14712598.2014.920815

    Article  CAS  PubMed  Google Scholar 

  16. Neer RM, Arnaud CD, Zanchetta JR et al (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Eng J Med 344(19):1434–1441. doi:10.1056/NEJM200105103441904

    Article  CAS  Google Scholar 

  17. Dempster DW, Zhou H, Recker RR et al (2016) A longitudinal study of skeletal histomorphometry at 6 and 24 months across four bone envelopes in postmenopausal women with osteoporosis receiving teriparatide or zoledronic acid in the SHOTZ trial. J Bone Miner Res 31:1429–1439. doi:10.1002/jbmr.2804

    Article  CAS  PubMed  Google Scholar 

  18. Moreira CA, Dempster DW (2017) Histomorphometric changes following treatment for osteoporosis. J Endocrinol Invest. doi:10.1007/s40618-017-0662-6

    Google Scholar 

  19. Hansen KE, Wilson HA, Zapalowski C et al (2011) Uncertainties in the prevention and treatment of glucocorticoid-induced osteoporosis. J Bone Miner Res 26:1989–1996. doi:10.1002/jbmr.362

    Article  PubMed  Google Scholar 

  20. Mazziotti G, Formenti AM, Adler RA et al (2016) Glucocorticoid-induced osteoporosis: pathophysiological role of GH/IGF-I and PTH/VITAMIN D axes, treatment options and guidelines. Endocrine 54:603–611. doi:10.1007/s12020-016-1146-8

    Article  CAS  PubMed  Google Scholar 

  21. Farahmand P, Marin F, Hawkins F et al (2013) Early changes in biochemical markers of bone formation during teriparatide therapy correlate with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis. Osteoporos Int 24:2971–2981. doi:10.1007/s00198-013-2379-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saag KG, Shane E, Boonen S et al (2007) Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Eng J Med 357:2028–2039. doi:10.1056/NEJMoa071408

    Article  CAS  Google Scholar 

  23. Harslǿf T, Langdhal BL (2016) New horizons in osteoporosis therapies. Curr Opin Pharmacol 28:38–42

    Article  PubMed  Google Scholar 

  24. Papapoulos SE, Lippuner K, Roux C et al (2015) The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM Extension study. Osteopros Int 26(12):2773–2783. doi:10.1007/s00198-015-3234-7

    Article  CAS  Google Scholar 

  25. Papapoulos SE, Makras P (2008) Selection of antiresorptive or anabolic treatments for postmenopausal osteoporosis. Nat Clin Pract End Metab 4(9):514–523. doi:10.1038/ncpendmet0941

    Article  CAS  Google Scholar 

  26. Adler RA (2016) Osteoporosis treatment: complexities and challenges. J Endocrinol Invest 39(7):719–720. doi:10.1007/s40618-016-0437-5

    Article  CAS  PubMed  Google Scholar 

  27. Miller PD, Hattersley G, Riis BJ et al (2016) Effect of Abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA 316(7):722–733. doi:10.1001/jama.2016.11136

    Article  CAS  PubMed  Google Scholar 

  28. Johnell O, Kanis JA, Odén A et al (2004) Fracture risk following an osteoporotic fracture. Osteoporos Int 15:175. doi:10.1007/s00198-003-1514-0

    Article  CAS  PubMed  Google Scholar 

  29. Cosman F, Hattersley G, Hu MY et al (2017) Effects of Abaloparatide-SC on fractures and bone mineral density in subgroups of postmenopausal women with osteoporosis and varying baseline risk factors. J Bone Miner Res 32:17–23. doi:10.1002/jbmr.2991

    Article  CAS  PubMed  Google Scholar 

  30. Costa AG, Bilezikian JP, Lewiecki EM (2014) Update on romosozumab: a humanized monoclonal antibody to sclerostin. Expert Opin Biol Ther 14(5):697–707. doi:10.1517/14712598.2014.895808

    Article  CAS  PubMed  Google Scholar 

  31. Drake MT, Srinivasan B, Mödder UI et al (2010) Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women. J Clin Endocrinol Metab 95(11):5056–5062. doi:10.1210/jc.2010-0720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Piemonte S, Romagnoli E, Bratengeier C et al (2012) Serum sclerostin levels decline in post-menopausal women with osteoporosis following treatment with intermittent parathyroid hormone. J Endocrinol Invest 35:866–868. doi:10.3275/8522

    CAS  PubMed  Google Scholar 

  33. Ke HZ, Richards WG, Li X, Ominsky MS (2012) Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev 33(5):747–783. doi:10.1210/er.2011-1060

    Article  CAS  PubMed  Google Scholar 

  34. Cosman F, Crittenden DB, Adachi JD et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Eng J Med 375(16):1532–1543

    Article  CAS  Google Scholar 

  35. Genant HK, Engelke K, Bolognese MA et al (2017) Effects of Romosozumab compared with teriparatide on bone density and mass at the spine and hip in postmenopausal women with low bone mass. J Bone Miner Res 32:181–187. doi:10.1002/jbmr.2932

    Article  CAS  PubMed  Google Scholar 

  36. McColm J, Hu L, Womack T, Tang CC, Chiang AY (2014) Single- and multiple-dose randomized studies of blosozumab, a monoclonal antibody against sclerostin, in healthy postmenopausal women. J Bone Miner Res 29:935–943. doi:10.1002/jbmr.2092

    Article  CAS  PubMed  Google Scholar 

  37. Recknor CP, Recker RR, Benson CT (2015) The effect of discontinuing treatment with Blosozumab: follow-up results of a phase 2 randomized clinical trial in postmenopausal women with low bone mineral density. J Bone Miner Res 30:1717–1725. doi:10.1002/jbmr.2489

    Article  CAS  PubMed  Google Scholar 

  38. Bone HG, Dempster DW, Eisman JA et al (2015) Odanacatib for the treatment of postmenopausal osteoporosis: development history and design and participant characteristics of LOFT, the long-term odanacatib fracture trial. Osteoporos Int 26(2):699–712. doi:10.1007/s00198-014-2944-6

    Article  CAS  PubMed  Google Scholar 

  39. Bonafede MM, Shi N, Bower AG et al (2015) Teriparatide treatment patterns in osteoporosis and subsequent fracture events: a US claims analysis. Osteoporos Int 26:1203–1212. doi:10.1007/s00198-014-2971-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cosman F, Nieves JW, Dempster DW (2017) Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res 32:198–202. doi:10.1002/jbmr.3051

    Article  CAS  PubMed  Google Scholar 

  41. Cosman F, Wermers RA, Recknor C et al (2009) Effects of Teriparatide in postmenopausal women with osteoporosis on prior alendronate or raloxifene: differences between stopping and continuing the antiresorptive agent. J Clin Endocrinol Metab 94(10):3772–3780. doi:10.1210/jc.2008-2719

    Article  CAS  PubMed  Google Scholar 

  42. Boonen S, Marin F, Obermayer-Pietsch B et al (2008) Effects of previous antiresorptive therapy on the bone mineral density response to 2 years of teriparatide treatment in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 93(3):852–860. doi:10.1210/jc.2007-0711

    Article  CAS  PubMed  Google Scholar 

  43. Cosman F, Keaveny TM, Kopperdahl D et al (2013) Hip and spine strength effects of adding versus switching to teriparatide in postmenopausal women with osteoporosis treated with prior alendronate or raloxifene. J Bone Miner Res 28:1328–1336. doi:10.1002/jbmr.1853

    Article  CAS  PubMed  Google Scholar 

  44. Leder BZ, Tsai JN, Uihlein AV et al (2014) Two years of denosumab and teriparatide administration in postmenopausal women with osteoporosis (the DATA extension study): a randomized controlled trial. J Clin Endocrinol Metab 99(5):1694–1700. doi:10.1210/jc.2013-4440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leder BZ, Tsai JN, Uihlein AV et al (2015) Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-switch study): extension of a randomised controlled trial. Lancet 386(9999):1147–1155. doi:10.1016/S0140-6736(15)61120-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leder BZ, Tsai JN, Jiang LA, Lee H (2017) Importance of prompt antiresorptive therapy in postmenopausal women discontinuing teriparatide or denosumab: the Denosumab and Teriparatide follow-up study (DATA-follow-up). Bone 98:54–58. doi:10.1016/j.bone.2017.03.006

    Article  CAS  PubMed  Google Scholar 

  47. Aubry-Rozier B, Gonzalez-Rodriguez E, Stoll D, Lamy O (2016) Severe spontaneous vertebral fractures after denosumab discontinuation: three case reports. Osteoporos Int 27(5):1923–1925. doi:10.1007/s00198-015-3380-y

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Minisola.

Ethics declarations

Conflict of interest

Prof. S. Minisola served as speaker for Abiogen, Amgen, Bruno Farmaceutici, Diasorin, Eli Lilly and Fujii. He also served on the Advisory Board of Abiogen. He received consultancy from Bruno Farmaceutici.

Statement of human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent is not required.

Funding

There was no specific funding for this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minisola, S., Cipriani, C., Occhiuto, M. et al. New anabolic therapies for osteoporosis. Intern Emerg Med 12, 915–921 (2017). https://doi.org/10.1007/s11739-017-1719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-017-1719-4

Keywords

Navigation