Advertisement

Internal and Emergency Medicine

, Volume 12, Issue 1, pp 9–11 | Cite as

NETosis in arterial and venous thrombosis: a one size fits all mechanism?

  • Erica De CandiaEmail author
IM - COMMENTARY
  • 289 Downloads

In their review, Mozzini et al. [1] highlight how several epidemiological studies have suggested associations between venous thromboembolism and atherosclerosis. Likely, common risk factors and biological mechanisms account for this association. In this context, the authors provide some evidences suggesting that NETosis might contribute to similarities between venous and arterial thrombotic disorders.

NETosis is the process of the release of web-like structures of DNA by activated neutrophils, named neutrophil extracellular traps (NETs), which can trap and kill microbes in tissues. This newly described mechanism of innate immune defense against infections ensures neutrophil anti-bacterial activity in addition to the more traditional mechanism of phagocytosis. An important seminal study by Brinkman et al. [2] showed that lipopolysaccharide induced the extrusion, from the cytoplasm of neutrophils, of fibrillar material that is made of condensed chromatin and DNA, and can be digested by...

Keywords

Deep Vein Thrombosis Calcify Coronary Artery Citrullinated Neutrophil Extracellular Trap Coronary Artery Atherosclerosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Statements on human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

None.

References

  1. 1.
    Mozzini C, Garbin U, Fratta Pasini AM, Cominacini L (2016) An exploratory look at NETosis in atherosclerosis. Intern Emerg Med. doi: 10.1007/s11739-016-1543-2 PubMedGoogle Scholar
  2. 2.
    Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535CrossRefPubMedGoogle Scholar
  3. 3.
    Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, Taylor FB, Esmon NL, Lupu F, Esmon CT (2009) Extracellular histones are major mediators of death in sepsis. Nat Med 15(11):1318–1321CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Liaw PC, Ito T, Iba T, Thachil J, Zeerleder S (2016) DAMP and DIC: the role of extracellular DNA and DNA-binding proteins in the pathogenesis of DIC. Blood Rev 30(4):257–261CrossRefPubMedGoogle Scholar
  5. 5.
    Leshner M, Wang S, Lewis C, Zheng H, Chen XA, Santy L, Wang Y (2012) PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol 3:307CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13(4):463–469CrossRefPubMedGoogle Scholar
  8. 8.
    Carestia A, Kaufman T, Rivadeneyra L, Landoni VI, Pozner RG, Negrotto S, D’Atri LP, Gomez RM, Schattner M (2016) Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leukoc Biol 99(1):153–162CrossRefPubMedGoogle Scholar
  9. 9.
    Carestia A, Kaufman T, Schattner M (2016) Platelets: new bricks in the building of neutrophil extracellular traps. Front Immunol 7:271CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Maugeri N, Campana L, Gavina M, Covino C, De Metrio M, Panciroli C, Maiuri L, Maseri A, D’Angelo A, Bianchi ME, Rovere-Querini P, Manfredi AA (2014) Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 12(12):2074–2088CrossRefPubMedGoogle Scholar
  11. 11.
    Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107(36):15880–15885CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Darrah E, Andrade F (2013) NETs: the missing link between cell death and systemic autoimmune diseases? Front Immunol 3:428CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ (2013) Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol 190(3):1217–1226CrossRefPubMedGoogle Scholar
  14. 14.
    Becatti M, Emmi G, Silvestri E, Bruschi G, Ciucciarelli L, Squatrito D, Vaglio A, Taddei N, Abbate R, Emmi L, Goldoni M, Fiorillo C, Prisco D (2016) Neutrophil activation promotes fibrinogen oxidation and thrombus formation in behcet disease. Circulation 133(3):302–311PubMedGoogle Scholar
  15. 15.
    Demers M, Wagner DD (2013) Neutrophil extracellular traps: a new link to cancer-associated thrombosis and potential implications for tumor progression. Oncoimmunology 2(2):e22946CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Abrams ST, Zhang N, Manson J, Liu T, Dart C, Baluwa F, Wang SS, Brohi K, Kipar A, Yu W, Wang G, Toh CH (2013) Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med 187(2):160–169CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kimball AS, Obi AT, Diaz JA, Henke PK (2016) The emerging role of NETs in venous thrombosis and immunothrombosis. Front Immunol 7:236CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gould TJ, Lysov Z, Liaw PC (2015) Extracellular DNA and histones: double-edged swords in immunothrombosis. J Thromb Haemost 13(Suppl 1):S82–S91CrossRefPubMedGoogle Scholar
  19. 19.
    Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF, Bhandari AA, Wagner DD (2012) Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 10(1):136–144CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Martinod K, Demers M, Fuchs TA, Wong SL, Brill A, Gallant M, Hu J, Wang Y, Wagner DD (2013) Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci USA 110(21):8674–8679CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    El-Sayed OM, Dewyer NA, Luke CE, Elfline M, Laser A, Hogaboam C, Kunkel SL, Henke PK (2015) Intact Toll-like receptor 9 signaling in neutrophils modulates normal thrombogenesis in mice. J Vasc Surg 64(5):1450–1458 e1CrossRefPubMedGoogle Scholar
  22. 22.
    Martinod K, Witsch T, Farley K, Gallant M, Remold-O’Donnell E, Wagner DD (2016) Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis. J Thromb Haemost 14(3):551–558CrossRefPubMedGoogle Scholar
  23. 23.
    van Montfoort ML, Stephan F, Lauw MN, Hutten BA, Van Mierlo GJ, Solati S, Middeldorp S, Meijers JC, Zeerleder S (2013) Circulating nucleosomes and neutrophil activation as risk factors for deep vein thrombosis. Arterioscler Thromb Vasc Biol 33(1):147–151CrossRefPubMedGoogle Scholar
  24. 24.
    Diaz JA, Fuchs TA, Jackson TO, Kremer Hovinga JA, Lammle B, Henke PK, Myers DD Jr, Wagner DD, Wakefield TW (2013) Plasma DNA is elevated in patients with deep vein thrombosis. J Vasc Surg Venous Lymphat Disord 1(4):341CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Savchenko AS, Martinod K, Seidman MA, Wong SL, Borissoff JI, Piazza G, Libby P, Goldhaber SZ, Mitchell RN, Wagner DD (2014) Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J Thromb Haemost 12(6):860–870CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Savchenko AS, Borissoff JI, Martinod K, De Meyer SF, Gallant M, Erpenbeck L, Brill A, Wang Y, Wagner DD (2014) VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood 123(1):141–148CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Borissoff JI, Joosen IA, Versteylen MO, Brill A, Fuchs TA, Savchenko AS, Gallant M, Martinod K, Ten Cate H, Hofstra L, Crijns HJ, Wagner DD, Kietselaer BL (2013) Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 33(8):2032–2040CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Megens RT, Vijayan S, Lievens D, Doring Y, van Zandvoort MA, Grommes J, Weber C, Soehnlein O (2012) Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost 107(3):597–598CrossRefPubMedGoogle Scholar
  29. 29.
    de Boer OJ, Li X, Teeling P, Mackaay C, Ploegmakers HJ, van der Loos CM, Daemen MJ, de Winter RJ, van der Wal AC (2013) Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction. Thromb Haemost 109(2):290–297CrossRefPubMedGoogle Scholar
  30. 30.
    Doring Y, Weber C, Soehnlein O (2013) Footprints of neutrophil extracellular traps as predictors of cardiovascular risk. Arterioscler Thromb Vasc Biol 33(8):1735–1736CrossRefPubMedGoogle Scholar
  31. 31.
    Lewis HD, Liddle J, Coote JE, Atkinson SJ, Barker MD, Bax BD, Bicker KL, Bingham RP, Campbell M, Chen YH, Chung CW, Craggs PD, Davis RP, Eberhard D, Joberty G, Lind KE, Locke K, Maller C, Martinod K, Patten C, Polyakova O, Rise CE, Rudiger M, Sheppard RJ, Slade DJ, Thomas P, Thorpe J, Yao G, Drewes G, Wagner DD, Thompson PR, Prinjha RK, Wilson DM (2015) Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol 11(3):189–191CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© SIMI 2017

Authors and Affiliations

  1. 1.Servizio Malattie Emorragiche e Trombotiche, Area di Ematologia, Fondazione Policlinico Agostino Gemelli, Istituto di Medicina InternaUniversità Cattolica del Sacro CuoreRomeItaly

Personalised recommendations