Skip to main content
Log in

Hypoadiponectinemia, cardiometabolic comorbidities and left ventricular hypertrophy

  • IM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

This study was designed to evaluate the prevalence of cardiometabolic comorbidities and the changes in left ventricular geometry and function in 135 subjects subgrouped according to low or normal total adiponectin plasma (ADPN) levels. Left ventricular (LV) internal diameter/height, total LV mass (LVM) and LVM index (LVMI), relative wall thickness (RWT), LV ejection fraction by echocardiography and diastolic parameters by pulsed-wave Doppler were calculated. Body mass index (BMI) (p < 0.0001), waist-to-hip ratio (p < 0.03), triglycerides (p < 0,001), prevalence of obesity (p < 0.005), visceral obesity (p < 0.003), left ventricular hypertrophy (LVH) (p < 0.001), metabolic syndrome (p < 0.0003) and coronary artery disease (CAD) (p < 0.003) were significantly increased and high-density lipoprotein-cholesterol (p < 0.001) was significantly reduced in hypo-ADPN than normal-ADPN subjects. LVM, LVMI, interventricular septum thickness and RWT were significantly (p < 0.0001) higher and left ventricular ejection fraction was significantly (p < 0.0002) lower in hypo-ADPN than normal-ADPN patients. LVMI correlated directly with BMI (p < 0.001), mean blood pressure (p < 0.001), metabolic syndrome (MetS) (p < 0.001) and inversely with ADPN (p < 0.0001). The prevalence of LVH (p < 0.001) and CAD (p < 0.01) was higher in subjects with normal-ADPN and MetS, while the presence of MetS did not change this finding in hypo ADPN group. Both models of regression analysis indicated that ADPN and BMI resulted independently associated with LVMI. In conclusion, our data seem to indicate that hypoadiponectinemia might be associated with an increased prevalence both of clinical comorbidities and increased LVMI. In this subset of subjects, ADPN and BMI, more than MetS, are able to explain cardiac damage. Accordingly, ADPN might become a new target in the management of cardiometabolic risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Di Chiara T, Argano C, Corrao S et al (2012) Hypoadiponectinemia: a link between visceral obesity and metabolic syndrome. J Nutr Metab ID175245:1–7

  2. Gustafsson S, Lind L, Zethelius B et al (2010) Adiponectin and cardiac geometry and function in elderly: results from two community-based cohort studies. Eur J Endocrinol 162:543–555

    Article  CAS  PubMed  Google Scholar 

  3. Romacho T, Elsen M, Röhrborn D et al (2014) Adipose tissue and its role in organ crosstalk. Acta Physiol (Oxf). doi:10.1111/apha.12246

    Google Scholar 

  4. Nishida M, Funahashi T, Shimomura I (2007) Pathophysiological significance of adiponectin. Med Mol Morphol 40:55–67

    Article  CAS  PubMed  Google Scholar 

  5. Adamczak M, Wiecek A, Funahashi T et al (2003) Decreased plasma adiponectin concentration in patients with essential hypertension. Am J Hypertens 16(1):72–75

    Article  CAS  PubMed  Google Scholar 

  6. Hotta K, Funahashi T, Arita Y et al (2000) Plasma concentrations of a novel, adipose-specific protein, Adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 20:1595–1599

    Article  CAS  PubMed  Google Scholar 

  7. Pischon T, Girman CJ, Hotamisligil GS et al (2004) Plasma adiponectin levels and risk ok of myocardial infarction in men. JAMA 291:134–141

    Article  Google Scholar 

  8. Kojima S, Funahashi T, Maruyoshi H et al (2005) Levels of the adipocyte-derived plasma protein, adiponectin, have a close relationship with atheroma. Thromb Res 115:483–490

    Article  CAS  PubMed  Google Scholar 

  9. Zhang H, Mo X, Hao Y et al (2013) Adiponectin levels and risk of coronary heart disease: a meta-analysis of prospective studies. Am J Med Sci 345(6):455–461

    Article  PubMed  Google Scholar 

  10. Di Chiara T, Licata A, Argano C et al (2013) Plasma adiponectin: a contributing factor for cardiac changes in visceral obesity-associated hypertension. Blood Press 1–7. doi:10.3109/08037051.2013.823767

  11. Hong SJ, Park CG, Seo HS et al (2004) Associations among plasma adiponectin, hyper-tension, left ventricular diastolic function and left ventricular mass index. Blood Press 13:236–242

    Article  CAS  PubMed  Google Scholar 

  12. Kozakova M, Muscelli E, Flyvbjerg A et al (2008) Adiponectin and left ventricular structure and function in healthy adults. J Clin Endocrinol Metab 93:2811–2818

    Article  CAS  PubMed  Google Scholar 

  13. Mitsuhashi H, Yatsuya H, Tamakowshi K et al (2007) Adiponectin level and left ventricular hypertrophy in Japanese men. Hypertension 49(6):1448–1454

    Article  CAS  PubMed  Google Scholar 

  14. Shibata R, Ouchi N, Ito M et al (2004) Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat Med 10:1384–1389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Katagiri H, Yamada T, Oka Y (2007) Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals. Circ Res 101(1):27–39

    Article  CAS  PubMed  Google Scholar 

  16. Wang C, Li L, Zhang ZG et al (2010) Globular adiponectin inhibits angiotensin II- induced nuclear factor kappaB activation through AMP-activated protein kinase in cardiac hypertrophy. J Cell Physiol 222:149–155

    Article  CAS  PubMed  Google Scholar 

  17. Crepaldi G, Belfiore F, Bosello O et al (1991) Special report: Italian Consensus Conference-overweight, obesity and health. Int J Obes 15:781–790

    CAS  PubMed  Google Scholar 

  18. Scaglione R, Ganguzza A, Corrao S et al (1995) Central obesity and hypertension: pathophysiologic role of renal haemodynamics and function. Intern J Obes 19:403–409

    CAS  Google Scholar 

  19. American Diabetic Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62–S69

  20. Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (2001) Executive summary of the third report of the national cholesterol program (NCEP-ATP III). JAMA 285(19):2486–2497

  21. Devereux RB, Lutas EM, Casale PN et al (1984) Standardization of M-mode echocardiographic left ventricular anatomic measurements. J Am Coll Cardiol 4:1222–1230

    Article  CAS  PubMed  Google Scholar 

  22. Taylor J (2013) New ESC guidelines published on stable coronary artery disease. Eur Heart J 34(38):2927–2928. doi:10.1093/eurheartj/eht377

    Article  PubMed  Google Scholar 

  23. Lee Y, Kim BK, Lim YH et al (2013) The relationship between adiponectin and left ventricular mass index varies with the risk of left ventricular hypertrophy. Plos One 8(7):e70246. doi:10.1371/journal.pone.0070246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Pischon T, Hotamisligil GS, Rimm EB (2003) Adiponectin: stability in plasma over 36 hours and within-person variation over 1 year. Clin Chem 49:650–652

    Article  CAS  PubMed  Google Scholar 

  25. Arita Y, Kihara S, Ouchi N et al (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83

    Article  CAS  PubMed  Google Scholar 

  26. Corrao S, Parrinello G, Arnone S et al (1993) Influence of obesity on the echocardiographic evaluation of left ventricular ejection fraction by area-length method: comparison with radionuclide angiography. J Cardiovasc Diagn Proced 11(2):127–134

    Google Scholar 

  27. De Simone G, Devereux RB, Daniels SR et al (1995) Effect of growth on variability of left ventricular mass; assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol 25:1056–1062

    Article  PubMed  Google Scholar 

  28. Lu JY, Huang KC, Chang LC et al (2008) Adiponectin: a biomarker of obesity-induced insulin resistance in adipose tissue and beyond. J Biomed Sci 15:565–576

    Article  CAS  PubMed  Google Scholar 

  29. Amin RH, Mathews ST, Alli A et al (2010) Endogenously produced adiponectin protects cardiomyocytes from hypertrophy by a PPARgamma-dependent autocrine mechanism. Am J Physiol Heart Circ Physiol 299:H690–H698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Schillaci G, Pirro M, Pucci G et al (2006) Different impact of the metabolic syndrome on left ventricular structure and function in hypertensive men and women. Hypertension 47:881–886

    Article  CAS  PubMed  Google Scholar 

  31. Hao G, Li W, Guo R, Yang JG (2013) Serum total adiponectin level and the risk of cardio-vascular disease in general population. A metaanalysis of 17 prospective studies. Atherosclerosis 228(1):29–35

    Article  CAS  PubMed  Google Scholar 

  32. Zhang H, Mo X, Hao Y, Huang J et al (2012) Adiponectin levels and risk of coronary heart disease: a metaanalysis of prospective studies. Am J Med Sc 345(6):455–461

    Article  Google Scholar 

  33. Kanhai DA, Kranendonk ME, Uiterwaal CS et al (2013) Adiponectin and incident coronary heart disease and stroke. A systematic review and meta-analysis of prospective studies. Obes Rev 14(7):555–567

    Article  CAS  PubMed  Google Scholar 

  34. Guerra F, Mancinelli L, Angelini L et al (2011) The association of left ventricular hypertrophy with metabolic syndrome is dependent on body mass index in hypertensive overweight or obese patients. PLoS One 6(1):e16630. doi:10.1371/journal.pone.0016630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Zhou J, Fu M, Qian J et al (2012) Adiponectin through its biphasic serum level is a useful biomarker during transition from diastolic dysfunction to systolic dysfunction—an experimental study. Lipids Health Dis 11:106

    Article  PubMed Central  PubMed  Google Scholar 

  36. Devereux RB, Roman MJ, de Simone G et al (1997) Relations of left ventricular mass to demographic and haemodynamic variables in American Indians. The Strong Heart Study. Circulation 96:1416–1423

    Article  CAS  PubMed  Google Scholar 

  37. Heckbert SR, Post W, Pearson GD et al (2006) Traditional cardiovascular risk factors in relation to left ventricular mass, volume, and systolic function by cardiac magnetic resonance imaging: the Multiethnic Study of Atherosclerosis. J Am Coll Cardiol 48(11):2285–2292

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ouchi N, Shibata R, Walsh K (2006) Cardioprotection by adiponectin. Trends Cardiovasc Med 16:141–146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Mather KJ, Goldberg RB (2014) Clinical use of adiponectin as a marker of metabolic dysregulation. Best Pract Clin Endocrinol Metab 28:107–117

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was in part supported by a grant of University of Palermo, Italy (2012-ATE-0278).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Scaglione.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Chiara, T., Argano, C., Scaglione, A. et al. Hypoadiponectinemia, cardiometabolic comorbidities and left ventricular hypertrophy. Intern Emerg Med 10, 33–40 (2015). https://doi.org/10.1007/s11739-014-1104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-014-1104-5

Keywords

Navigation