Skip to main content

Advertisement

Log in

Mucosal changes induced by ischemia–reperfusion injury in a jejunal loop transplanted in oropharynx

  • IM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Tissues exposed to ischemia and reperfusion develop an inflammatory response. We investigate the morphological and immunological changes occurring in the mucosa of a jejunal loop transplanted in the oropharynx of a man undergoing circular pharyngolaryngectomy. Jejunal biopsies were collected during the transplantation procedures (cold and warm ischemia, reperfusion), during the 7 post-operative days through an exteriorized jejunal segment for flap monitoring, and 45 days after transplantation through an upper endoscopy. Matrix metalloproteinase (MMP)-3 and MMP-12 increase was accompanied by a parallel rise in apoptotic enterocytes, and by a concomitant reduction of surface area to volume ratio and enterocyte height. Goblet cell hyperplasia is coupled with Paneth cell disappearance at the crypt base. CD8-positive intraepithelial lymphocytes initially decrease, then they increase in accordance with the peak of enterocyte apoptosis. We identified alterations in lymphocyte infiltration, mucosal architecture and epithelial cell turnover, which may give a window to mechanisms of small bowel ischemia–reperfusion in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IEL:

Intraepithelial lymphocyte

IL:

Interleukin

LPMC:

Lamina propria mononuclear cell

MMP:

Matrix metalloproteinase

SV:

Surface area to volume ratio

TUNEL:

Terminal deoxynucleotidyltransferase-mediated digoxigenin-deoxyuridine triphosphate nick end labeling

References

  1. Mazariegos GV (2009) Intestinal transplantation: current outcomes and opportunities. Curr Opin Organ Transplant 14:515–521

    Article  PubMed  Google Scholar 

  2. Pirenne J, Kawai M (2009) Intestinal transplantation: evolution in immunosuppression protocols. Curr Opin Organ Transplant 14:250–255

    Article  PubMed  Google Scholar 

  3. Bines JE (2009) Intestinal failure: a new era in clinical management. J Gastroenterol Hepatol 24:S86–S92

    Article  PubMed  Google Scholar 

  4. Mallick IH, Yang W, Winslet MC et al (2004) Ischemia–reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci 49:1359–1377

    Article  PubMed  CAS  Google Scholar 

  5. Boros P, Bromberg JS (2006) New cellular and molecular immune pathways in ischemia/reperfusion injury. Am J Transplant 6:652–658

    Article  PubMed  CAS  Google Scholar 

  6. Carden DL, Granger DN et al (2000) Pathophysiology of ischaemia–reperfusion injury. J Pathol 190:255–266

    Article  PubMed  CAS  Google Scholar 

  7. Gourdin MJ, Bree B, De Kock M (2009) The impact of ischaemia–reperfusion on the blood vessel. Eur J Anaesthesiol 26:537–547

    Article  PubMed  CAS  Google Scholar 

  8. Ikeda H et al (1998) Apoptosis is a major mode of cell death caused by ischaemia and ischaemia/reperfusion injury to the rat intestinal epithelium. Gut 42:530–537

    Article  PubMed  CAS  Google Scholar 

  9. Morini S, Elias G, Brown M et al (2010) Chronic morpho-functional damage as a consequence of transient ischemia/reperfusion injury of the small bowel. Histol Histopathol 25:277–286

    PubMed  CAS  Google Scholar 

  10. Chen Y, Lui VC, Rooijen NV et al (2004) Depletion of intestinal resident macrophages prevents ischaemia reperfusion injury in gut. Gut 53:1772–1780

    Article  PubMed  CAS  Google Scholar 

  11. Osman M, Russell J, Granger DN (2009) Lymphocyte-derived interferon-gamma mediates ischemia–reperfusion-induced leukocyte and platelet adhesion in intestinal microcirculation. Am J Physiol Gastrointest Liver Physiol 296:G659–G663

    Article  PubMed  CAS  Google Scholar 

  12. Giovanoli P, Frey M, Schmid S et al (1996) Free jejunum transfer for functional reconstruction after tumour resection in the oral cavity and the pharynx: changes in morphology and function. Microsurgery 17:535–544

    Article  PubMed  CAS  Google Scholar 

  13. Patel RS, Goldstein DP, Brown et al (2010) Circumferential pharyngeal reconstruction: history, critical analysis of techniques, and current therapeutic recommendations. Head Neck 32:109–120

    PubMed  Google Scholar 

  14. Katsaros J, Banis JC, Acland RD et al (1985) Monitoring free vascularised jejunum grafts. Br J Plast Surg 38:220–222

    Article  PubMed  CAS  Google Scholar 

  15. Benazzo M, Occhini A, Rossi V et al (2002) Jejunum free flap in hypopharynx reconstruction: case series. BMC Cancer 10:2–13

    Google Scholar 

  16. Dunnill MS, Whitehead R (1972) A method for the quantitation of small intestinal biopsy specimens. J Clin Pathol 25:243–246

    Article  PubMed  CAS  Google Scholar 

  17. Corazza GR, Frazzoni M, Dixon MF et al (1985) Quantitative assessment of the mucosal architecture of jejunal biopsy specimens: a comparison between linear measurement, stereology, and computer aided microscopy. J Clin Pathol 38:765–770

    Article  PubMed  CAS  Google Scholar 

  18. Di Sabatino A, Miceli E, Dhaliwal W et al (2008) Distribution, proliferation and function of Paneth cells in uncomplicated and complicated adult celiac disease. Am J Clin Pathol 130:34–42

    Article  PubMed  Google Scholar 

  19. Di Sabatino A, Pender SL, Jackson CL et al (2007) Functional modulation of Crohn’s disease myofibroblasts by anti-TNF antibodies. Gastroenterology 133:137–149

    Article  PubMed  Google Scholar 

  20. Müller AR, Langrehr JM, Nalesnik M et al (1994) Mucosal glutaminase activity and histology as parameters of small bowel preservation injury. J Surg Res 56:207–215

    Article  PubMed  Google Scholar 

  21. Takeyoshi I, Zhang S, Nomoto M et al (2001) Mucosal damage and recovery of the intestine after prolonged preservation and transplantation in dogs. Transplantation 71:1–7

    Article  PubMed  CAS  Google Scholar 

  22. Grant D, Abu-Elmagd K, Reyes J et al (2005) Intestine transplant registry. 2003 report of the intestine transplant registry: a new era has dawned. Ann Surg 241:607–613

    Google Scholar 

  23. Mueller AR, Platz KP, Heckert C et al (1998) The extracellular matrix: an early target of preservation/reperfusion injury and acute rejection after small bowel transplantation. Transplantation 65:770–776

    Article  PubMed  CAS  Google Scholar 

  24. Robinson EK, Kelly DP, Mercer DW et al (2008) Differential effects of luminal arginine and glutamine on metalloproteinase production in the postischemic gut. JPEN J Parenter Enteral Nutr 32:433–438

    Article  PubMed  CAS  Google Scholar 

  25. Mueller AR, Nalesnik MA, Langrehr JM et al (1993) Evidence that small bowel preservation causes primarily basement membrane and endothelial rather than epithelial cell injury. Transplantation 56:1499–1504

    Article  PubMed  CAS  Google Scholar 

  26. Pender SL, MacDonald TT (2004) Matrix metalloproteinases and the gut—new roles for old enzymes. Curr Opin Pharmacol 4:546–550

    Article  PubMed  CAS  Google Scholar 

  27. Heuschkel RB, MacDonald TT, Monteleone G et al (2000) Imbalance of stromelysin-1 and TIMP-1 in the mucosal lesions of children with inflammatory bowel disease. Gut 47:57–62

    Article  PubMed  CAS  Google Scholar 

  28. Gordon JN, Pickard KM, Di Sabatino A et al (2008) Matrix metalloproteinase-3 production by gut IgG plasma cells in chronic inflammatory bowel disease. Inflamm Bowel Dis 14:195–203

    Article  PubMed  Google Scholar 

  29. Pender SL, Li CK, Di Sabatino A et al (2006) Role of macrophage metalloelastase in gut inflammation. Ann N Y Acad Sci 1072:386–388

    Article  PubMed  CAS  Google Scholar 

  30. Ciccocioppo R, Di Sabatino A, Parroni R et al (2001) Increased enterocyte apoptosis and Fas/FasL system in celiac disease. Am J Clin Pathol 115:494–503

    Article  PubMed  CAS  Google Scholar 

  31. Keren DF, Elliott HL, Brown GD et al (1975) Atrophy of villi with hypertrophy and hyperplasia of Paneth cells in isolated (Thiry-Vella) ileal loops in rabbit. Gastroenterology 68:83–93

    PubMed  CAS  Google Scholar 

  32. Ikeda H, Yang CL, Tong J et al (2002) Rat small intestinal goblet cell kinetics in the process of restitution of surface epithelium subjected to ischemia–reperfusion injury. Dig Dis Sci 47:590–601

    Article  PubMed  Google Scholar 

  33. Ali R, Farrell T (2009) Thermotolerance-induced goblet cell activity confers protection in post-operative gut barrier dysfunction. Int J Surg 7:237–242

    Article  PubMed  Google Scholar 

  34. Schenk M, Mueller C (2008) The mucosal immune system at the gastrointestinal barrier. Best Pract Res Clin Gastroenterol 22:391–409

    Article  PubMed  CAS  Google Scholar 

  35. Creamer B, Pink IJ (1967) Paneth-cell deficiency. Lancet 1:304–306

    Article  PubMed  CAS  Google Scholar 

  36. Linfert D, Chowdhry T, Rabb H (2009) Lymphocytes and ischemia–reperfusion injury. Transplant Rev 23:1–10

    Article  Google Scholar 

  37. Puglisi RN, Strande L, Santos M et al (1996) The effect of cyclosporine in gut ischemic injury: a computerized morphometric and enzymatic analysis. J Pediatr Surg 31:319–322

    Article  PubMed  CAS  Google Scholar 

  38. Soda Y, el-Assal ON, Yu L (1999) Suppressed endothelin-1 production by FK506 and cyclosporin A in ischemia/reperfusion of rat small intestine. Surgery 125:23–32

    Article  PubMed  CAS  Google Scholar 

  39. Fukatsu K, Sakamoto S, Hara E et al (2006) Gut ischemia–reperfusion affects gut mucosal immunity: a possible mechanism for infectious complications after severe surgical insults. Crit Care Med 34:182–187

    Article  PubMed  Google Scholar 

  40. Di Sabatino A, Ciccocioppo R, D'Alò S et al (2001) Intraepithelial and lamina propria lymphocytes show distinct patterns of apoptosis, whereas both the populations are active in Fas-based cytotoxicity in coeliac disease. Gut 49:380–386

    Google Scholar 

  41. Ciccocioppo R, D'Alò S, Di Sabatino A et al (2002) Mechanisms of villous atrophy in autoimmune enteropathy and coeliac disease. Clin Exp Immunol 128:88–93

    Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Sabatino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Sabatino, A., Brunetti, L., Biancheri, P. et al. Mucosal changes induced by ischemia–reperfusion injury in a jejunal loop transplanted in oropharynx. Intern Emerg Med 8, 317–325 (2013). https://doi.org/10.1007/s11739-011-0615-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-011-0615-6

Keywords

Navigation