Skip to main content

Advertisement

Log in

Recent advances in iron metabolism and related disorders

  • IM - Review
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Iron is essential for life, because it is indispensable for several biological reactions such as oxygen transport, DNA synthesis and cell proliferation, but is toxic if present in excess since it causes cellular damage through free radical formation. Either cellular or systemic iron regulation can be disrupted in disorders of iron metabolism. In the past few years, our understanding of iron metabolism and its regulation has dramatically changed. New disorders of iron metabolism have emerged and the role of iron has started to be recognized as a cofactor of other disorders. The study of genetic conditions such as hemochromatosis and iron-refractory–iron-deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited for a more effective treatment of both genetic and acquired iron disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andrews NC, Schmidt PJ (2007) Iron homeostasis. Annu Rev Physiol 69:69–85

    Article  CAS  PubMed  Google Scholar 

  2. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2:406–414

    Article  CAS  PubMed  Google Scholar 

  3. De Domenico I, McVey Ward D, Kaplan J (2008) Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat Rev Mol Cell Biol 9:72–81

    Article  PubMed  Google Scholar 

  4. Nemeth E, Tuttle MS, Powelson J et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093

    Article  CAS  PubMed  Google Scholar 

  5. Du X, She E, Gelbart T et al (2008) The serine protease TMPRSS6 is required to sense iron deficiency. Science 320:1088–1092

    Article  CAS  PubMed  Google Scholar 

  6. Silvestri L, Pagani A, Nai A et al (2008) The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab 8:502–511

    Article  CAS  PubMed  Google Scholar 

  7. Tanno T, Bhanu NV, Oneal PA et al (2007) High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med 13:1096–1101

    Article  CAS  PubMed  Google Scholar 

  8. Finberg KE, Heeney MM, Campagna DR et al (2008) Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat Genet 40:569–571

    Article  CAS  PubMed  Google Scholar 

  9. Truksa J, Gelbart T, Peng H et al (2009) Suppression of the hepcidin-encoding gene Hamp permits iron overload in mice lacking both hemojuvelin and matriptase-2/TMPRSS6. Br J Haematol 147:571–581

    Article  CAS  PubMed  Google Scholar 

  10. Trombini P, Coliva T, Nemeth E et al (2007) Effects of plasma transfusion on hepcidin production in human congenital hypotransferrinemia. Haematologica 92:1407–1410

    Article  CAS  PubMed  Google Scholar 

  11. Iolascon A, De Falco L (2009) Mutations in the gene encoding DMT1: clinical presentation and treatment. Semin Hematol 46:358–370

    Article  CAS  PubMed  Google Scholar 

  12. Camaschella C (2009) Hereditary sideroblastic anemias: pathophysiology, diagnosis, and treatment. Semin Hematol 46:371–377

    Article  CAS  PubMed  Google Scholar 

  13. Weinstein DA, Roy CN, Fleming MD et al (2002) Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood 100:3776–3781

    Article  CAS  PubMed  Google Scholar 

  14. Ganz T, Nemeth E (2009) Iron sequestration and anemia of inflammation. Semin Hematol 46:387–393

    Article  CAS  PubMed  Google Scholar 

  15. McNeill A, Pandolfo M, Kuhn J, Shang H, Miyajima H (2008) The neurological presentation of ceruloplasmin gene mutations. Eur Neurol 60:200–205

    Article  PubMed  Google Scholar 

  16. Pietrangelo A (2004) Hereditary hemochromatosis—a new look at an old disease. N Engl J Med 350:2383–2397

    Article  CAS  PubMed  Google Scholar 

  17. Goswami T, Andrews NC (2006) Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J Biol Chem 281:28494–28498

    Article  CAS  PubMed  Google Scholar 

  18. Gao J, Chen J, Kramer M et al (2009) Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression. Cell Metab 9:217–227

    Article  CAS  PubMed  Google Scholar 

  19. Camaschella C (2005) Understanding iron homeostasis through genetic analysis of hemochromatosis and related disorders. Blood 106:3710–3717

    Article  CAS  PubMed  Google Scholar 

  20. Bacon BR, Britton RS (2008) Clinical penetrance of hereditary hemochromatosis. N Engl J Med 358:291–292

    Article  CAS  PubMed  Google Scholar 

  21. Fischer R, Piga A, Harmatz P, Nielsen P (2005) Monitoring long-term efficacy of iron chelation treatment with biomagnetic liver susceptometry. Ann NY Acad Sci 1054:350–357

    Article  CAS  PubMed  Google Scholar 

  22. Roetto A, Papanikolaou G, Politou M et al (2003) Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 33:21–22

    Article  CAS  PubMed  Google Scholar 

  23. Papanikolaou G, Samuels ME, Ludwig EH et al (2004) Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet 36:77–82

    Article  CAS  PubMed  Google Scholar 

  24. Camaschella C, Poggiali E (2009) Rare types of genetic hemochromatosis. Acta Haematol 122:140–145

    Article  CAS  PubMed  Google Scholar 

  25. Piperno A, Roetto A, Mariani R et al (2004) Homozygosity for transferrin receptor-2 Y250X mutation induces early iron overload. Haematologica 89:359–360

    CAS  PubMed  Google Scholar 

  26. Le Gac G, Mons F, Jacolot S et al (2004) Early onset hereditary hemochromatosis resulting from a novel TFR2 gene nonsense mutation (R105X) in two siblings of north French descent. Br J Haematol 125:674–678

    Article  CAS  PubMed  Google Scholar 

  27. De Domenico I, Ward DM, Musci G, Kaplan J (2006) Iron overload due to mutations in ferroportin. Haematologica 91:92–95

    PubMed  Google Scholar 

  28. Cazzola M (2005) Role of ferritin and ferroportin genes in unexplained hyperferritinaemia. Best Pract Res Clin Haematol 18:251–263

    Article  CAS  PubMed  Google Scholar 

  29. Lakhal S, Talbot NP, Crosby A, Stoepker C, Townsend AR, Robbins PA, Pugh CW, Ratcliffe PJ, Mole DR (2009) Regulation of growth differentiation factor 15 expression by intracellular iron. Blood 113:1555–1563

    Article  CAS  PubMed  Google Scholar 

  30. Tanno T, Porayette P, Sripichai O et al (2009) Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells. Blood 114:181–186

    Article  CAS  PubMed  Google Scholar 

  31. Mendler MH, Turlin B, Moirand R et al (1999) Insulin resistance-associated hepatic iron overload. Gastroenterology 117:1155–1163

    Article  CAS  PubMed  Google Scholar 

  32. Ruivard M, Lainé F, Ganz T et al (2009) Iron absorption in dysmetabolic iron overload syndrome is decreased and correlates with increased plasma hepcidin. J Hepatol 50:1219–1225

    Article  CAS  PubMed  Google Scholar 

  33. Riva A, Trombini P, Mariani R et al (2008) Revaluation of clinical and histological criteria for diagnosis of dysmetabolic iron overload syndrome. World J Gastroenterol 14:4745–4752

    Article  PubMed  Google Scholar 

  34. Ajioka RS, Phillips JD, Weiss RB et al (2008) Down-regulation of hepcidin in porphyria cutanea tarda. Blood 112:4723–4728

    Article  CAS  PubMed  Google Scholar 

  35. Kannengiesser C, Jouanolle AM, Hetet G et al (2009) A new missense mutation in the L ferritin coding sequence associated with elevated levels of glycosylated ferritin in serum and absence of iron overload. Haematologica 94:335–339

    Article  CAS  PubMed  Google Scholar 

  36. Camaschella C, Poggiali E (2009) Towards explaining “unexplained hyperferritinemia”. Haematologica 94:307–309

    Article  PubMed  Google Scholar 

  37. Clark SF (2009) Iron deficiency anemia: diagnosis, management. Curr Opin Gastroenterol 25:122–128

    Article  CAS  PubMed  Google Scholar 

  38. Chertow GM, Mason PD, Vaage-Nilsen O, Ahlmén J (2006) Update on adverse drug events associated with parenteral iron. Nephrol Dial Transplant 21:378–382

    Article  CAS  PubMed  Google Scholar 

  39. Angelucci E, Barosi G, Camaschella C et al (2008) Italian Society of Hematology practice guidelines for the management of iron overload in thalassemia major and related disorders. Haematologica 93:741–752

    Article  PubMed  Google Scholar 

  40. Maggio A, Vitrano A, Capra M et al (2009) Improving survival with deferiprone treatment in patients with thalassemia major: a prospective multicenter randomised clinical trial under the auspices of the Italian Society for Thalassemia and Hemoglobinopathies. Blood Cells Mol Dis 42:247–251

    Article  CAS  PubMed  Google Scholar 

  41. Cappellini MD, Taher A (2008) Long-term experience with deferasirox (ICL670), a once-daily oral iron chelator, in the treatment of transfusional iron overload. Expert Opin Pharmacother 9:2391–2402

    Article  CAS  PubMed  Google Scholar 

  42. Sasu BJ, Cooke KS, Arvedson TL et al (2010) Anti-hepcidin antibody treatment modulates iron metabolism and is effective in a mouse model of inflammation-induced anemia. Blood. doi:10.1182/blood-2009-09-245977

  43. Kell DB (2009) Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2:2. doi:10.1186/1755-8794-2-2

    Article  PubMed  Google Scholar 

  44. Sullivan JL (2009) Iron in arterial plaque: a modifiable risk factor for atherosclerosis. Biochem Biophys Acta 1790:718–723

    CAS  PubMed  Google Scholar 

  45. Zacharski LR, Chow BK, Howes PS et al (2007) Reduction of iron stores and cardiovascular outcomes in patients with peripheral arterial disease: a randomized controlled trial. JAMA 297:603–610

    Article  CAS  PubMed  Google Scholar 

  46. Ponka P (2004) Hereditary causes of disturbed iron homeostasis in the central nervous system. Ann NY Acad Sci 1012:267–281

    Article  CAS  PubMed  Google Scholar 

  47. Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17:5–17

    Article  PubMed  Google Scholar 

  48. Thomas M, Jankovic J (2004) Neurodegenerative disease and iron storage in the brain. Curr Opin Neurol 17:437–442

    Article  PubMed  Google Scholar 

  49. Camaschella C (2009) BMP6 orchestrates iron metabolism. Nat Genet 41:386–388

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Camaschella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camaschella, C., Strati, P. Recent advances in iron metabolism and related disorders. Intern Emerg Med 5, 393–400 (2010). https://doi.org/10.1007/s11739-010-0387-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-010-0387-4

Keywords

Navigation