Variation of terpene lactones composition in Ginkgo biloba (L.) leaves under the influence of harvesting time and growing location

Abstract

Our research aim was to investigate quantitative composition of terpene lactones in G. biloba leaf samples cultivated in the Nordic Baltic region (Lithuania) and present recommendations to industry on rational planning of the collection of plant material rich in terpene lactones. The data of our study showed that the location of the tree and the time of harvest have significant effect (p < 0.05) on the amount of terpene lactones. Studies have shown that the age of the plant affects the amount of the accumulated terpene lactones in Ginkgo biloba leaves, and thus it is important to determine the optimal age of the plantation trees for the harvesting of raw material. A tendency was found that the amount of terpene lactones in Ginkgo biloba leaf samples decrease with the increasing age of the plant. To ensure the optimal collection of raw material, it is recommended to place the G. biloba plantations in northern (to collect the highest amount of ginkgolide A, B, C) and western (to collect the highest amount of bilobalide) phyto-regions. Due to the maximum concentration of ginkgolide C, A, B and bilobalide in samples, October is recommended as appropriate times to collect G. biloba leaves for the industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ahlemeyer B, Krieglstein J (2003) Neuroprotective effects of Ginkgo biloba extract. Cell Mol Life Sci 60:1779–1792. https://doi.org/10.1007/s00018-003-3080-1

    CAS  Article  PubMed  Google Scholar 

  2. Cheng SY, Xu F, Wang Y (2009) Advances in the study of flavonoids in Ginkgo biloba leaves. J. Med Plants Res 3:1248–1252. Available online at http://www.academicjournals.org/JMPR. Accessed 26 June 2020

  3. Ellnain- Wojtaszek M, Kruczyński Z, Kasprzak J (2001) Analysis of the content of flavonoids, phenolic acids as well as free radicals from Ginkgo biloba L. leaves during the vegetative cycle. Acta Pol Pharm 58:205–209

    CAS  PubMed  Google Scholar 

  4. Ellnain-Wojtaszek M, Kruczyński Z, Kasprzak J (2003) Investigation of the free radical scavenging activity of Ginkgo biloba L. leaves. Fitoterapia 74:1–6. https://doi.org/10.1016/S0367-326X(02)00306-4

    CAS  Article  PubMed  Google Scholar 

  5. European Pharmacopoeia, 9 th ed. (2017) European Directorate for the Quality of Medicines and Health Care, Strasbourg

  6. Flesch V, Jacques M, Cosson L, Teng BP, Petiard V, Balz JP (1992) Relative importance of growth and light level on terpene content of Ginkgo biloba. Phytochemistry 31:1941–1945. https://doi.org/10.1016/0031-9422(92)80337-E

    CAS  Article  Google Scholar 

  7. Hariharan P, Subburaju T (2012) Medicinal plants and its standardization-a global and industrial overview. GJMPR 1:10–13

    Google Scholar 

  8. Huang P, Zhang L, Chai C, Qian XC, Li W, Li JS, Cai BC (2014) Effects of food and gender on the pharmacokinetics of ginkgolides A, B, C and bilobalide in rats after oral dosing with Ginkgo terpene lactones extract. J Pharm Biomed Anal 100:138–144. https://doi.org/10.1016/j.jpba.2014.07.030

    CAS  Article  PubMed  Google Scholar 

  9. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2(R1) (2005). http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf. Accessed 22 Jan 2018.

  10. Isah T (2015) Rethinking Ginkgo biloba L.: medicinal uses and conservation. Pharmacogn Rev 9:140. https://doi.org/10.4103/0973-7847.162137

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kaur P, Chaudhary A, Singh RD, Gopichand PR, Singh B (2012) Spatial and temporal variation of secondary metabolite profiles in Ginkgo biloba leaves. Chem Biodivers 2:409–417. https://doi.org/10.1002/cbdv.201100082

    CAS  Article  Google Scholar 

  12. Lin Y, Lou K, Wu G, Wu X, Zhou X, Feng Y, Yu P (2019) Bioactive metabolites in of Ginkgo biloba leaves: variations by seasonal, meteorological and soil. Braz J Biol. https://doi.org/10.1590/1519-6984.220519

    Article  Google Scholar 

  13. Linderholm HW, Solberg BØ, Lindholm M (2003) Tree-ring records from central Fennoscandia: the relationship between tree growth and climate along a west–east transect. Holocene 13:887–895. https://doi.org/10.1191/0959683603hl671rp

    Article  Google Scholar 

  14. Lynch JW, Chen X (2008) Subunit-specific potentiation of recombinant glycine receptors by NV-31, a bilobalide-derived compound. Neurosci Lett 435:147–151. https://doi.org/10.1016/j.neulet.2008.02.022

    CAS  Article  PubMed  Google Scholar 

  15. Mäkinen H, Nöjd P, Kahle HP et al (2003) Large-scale climatic variability and radial increment variation of Picea abies (L.) Karst. in central and northern Europe. Trees 17:173–184. https://doi.org/10.1007/s00468-002-0220-4

    Article  Google Scholar 

  16. Matsumoto K (2010) Causal factors for spatial variation in long-term phenological trends in Ginkgo biloba L. in Japan. Int J Climatol 30:1280–1288. https://doi.org/10.1002/joc.1969

    Article  Google Scholar 

  17. Matsumoto K, Ohta T, Irasawa M, Nakamura T (2003) Climate change and extension of the Ginkgo biloba L. growing season in Japan. Glob Change Biol 11:1634–1642. https://doi.org/10.1046/j.1365-2486.2003.00688.x

    Article  Google Scholar 

  18. Park YG, Kim SJ, Jung HY, Kang YM, Kang SM, Prasad DT et al (2004) Variation of ginkgolides and bilobalide contents in leaves and cell cultures of Ginkgo biloba L. Biotechnol Bioprocess Eng 9:35–40. https://doi.org/10.1007/BF02949319

    CAS  Article  Google Scholar 

  19. Rimmer CA, Howerton SB, Sharpless KE, Sander LC, Long SE, Murphy KE et al (2007) Characterization of a suite of Ginkgo-containing standard reference materials. Anal Bioanal Chem 389:179–196. https://doi.org/10.1007/s00216-007-1398-5

    CAS  Article  PubMed  Google Scholar 

  20. Sabater-Jara AB, Souliman-Youssef S, Novo-Uzal E, Almagro L, Belchí-Navarro S, Pedreño MA (2013) Biotechnological approaches to enhance the biosynthesis of ginkgolides and bilobalide in Ginkgo biloba. Phytochem Rev 12:191–205. https://doi.org/10.1007/s11101-013-9275-7

    CAS  Article  Google Scholar 

  21. Sharafzadeh S (2011) Ginkgo (Ginkgo biloba L.), a medicinal tree. Int Res J Appl Basic Sci 2:334–338

    Google Scholar 

  22. Singh B, Kaur P, Singh RD, Ahuja PS (2008) Biology and chemistry of Ginkgo biloba. Fitoterapia 79:401–418. https://doi.org/10.1016/j.fitote.2008.05.007

    CAS  Article  PubMed  Google Scholar 

  23. Sun Y, Li W, Fitzloff JF, Van Breemen RB (2005) Liquid chromatography/electrospray tandem mass spectrometry of terpenoid lactones in Ginkgo biloba. J Mass Spectrom 40:373–379. https://doi.org/10.1002/jms.795

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. van Nederkassel AM, Vijverman V, Massart DL, Heyden YV (2005) Development of a Ginkgo biloba fingerprint chromatogram with UV and evaporative light scattering detection and optimization of the evaporative light scattering detector operating conditions. J Chromatogr A 1085:230–239. https://doi.org/10.1016/j.chroma.2005.05.110

    CAS  Article  PubMed  Google Scholar 

  25. Walesiuk A, Trofimiuk E, Braszko JJ (2006) Ginkgo biloba normalizes stress-and corticosterone-induced impairment of recall in rats. Pharmacol Res 53:123–128. https://doi.org/10.1016/j.phrs.2005.09.007

    CAS  Article  PubMed  Google Scholar 

  26. Xu Y, Wang G, Cao F, Zhu C, Wang G, El-Kassaby YA (2014) Light intensity affects the growth and flavonol biosynthesis of Ginkgo (Ginkgo biloba L.). New Forest 45:765–776. https://doi.org/10.1007/s11056-014-9435-7

    Article  Google Scholar 

  27. Yao X, Shang E, Zhou G, Tang Y, Guo S, Su S et al (2012) Comparative characterization of total flavonol glycosides and terpene lactones at different ages, from different cultivation sources and genders of Ginkgo biloba leaves. Int J Mol Sci 13:10305–10315. https://doi.org/10.3390/ijms130810305

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Yu S, Chen Y, Zhang L, Shan M, Tang Y, Ding A (2010) Quantitative comparative analysis of the bio- active and toxic constituents of leaves and spikes of Schizonepeta tenuifolia at different harvesting times. Int J Mol Sci 10:6635–6644. https://doi.org/10.3390/ijms12106635

    CAS  Article  Google Scholar 

  29. Zhang Y, Liu P, Kong Q, Xing S, Liu X, Sun L (2017) The Contents of terpene trilactone and flavonoid in leaves of seedlings from ancient female Ginkgo trees in China. Hortic Plant J 3:165–171. https://doi.org/10.1016/j.hpj.2017.06.002

    Article  Google Scholar 

Download references

Acknowledgements

Authors of this study would like to thank Lithuanian University of Health Sciences for material base.

Funding

There was no funding for the present research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laura Rimkiene.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by M. Stobiecki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rimkiene, L., Ivanauskas, L., Zevzikovas, A. et al. Variation of terpene lactones composition in Ginkgo biloba (L.) leaves under the influence of harvesting time and growing location. Acta Physiol Plant 43, 46 (2021). https://doi.org/10.1007/s11738-021-03217-1

Download citation

Keywords

  • Terpene lactones
  • Seasonal alterations
  • Different location
  • Multivariate analysis
  • HPLC–DAD–ELSD