Growth regulation of Desmostachya bipinnata by organ-specific biomass, water relations, and ion allocation responses to improve salt resistance

Abstract

Salt resistance strategies in Desmostachya bipinnata may be a function of coordinated organ specific responses for growth and developmental stages. It may provide clues to improve salt tolerance in conventional crops. The effects of NaCl concentrations (100, 200, 300 and 400 mM) on growth, water relations, organic compound (proline and sugar) accumulation, ion-flux and nutrient selectivity both in root [adventitious (RA) and mature (RM) root] and shoot [juvenile (LJ) and adult (LA) leaves] organs were investigated. Decreases in biomass were observed under saline treatments higher than 100 mM NaCl. The lower amount of biomass is considered to be a survival strategy under harsh conditions due to reallocation of energy in the plant. D. bipinnata regulated water flux (OP, osmotic potential, in the following order: LJ > LA > RM > RA) to allow water uptake from soil under hyperosmotic conditions. Na+ was largely accumulated in roots followed by LA and LJ. This ion excluding strategy is common in monocots to protect photosynthetic tissues. Salt-treated plants retained more Ca2+ and Mg2+ in roots than in shoots, while K+ allocation was not affected by salinity. This may be due to selective transport in the case of K+ and increasing use efficiency for Ca2+ and Mg2+. Whole plant responses generally are organ-specific based on salinity concentrations. Our findings suggest that different organs of D. bipinnata coordinated with each other for biomass partitioning, OP gradient, Na+ distribution, K+ selective transport, nutrient use efficiency, and sugar and proline allocation to achieve better yields in moderately saline areas for fodder/forage production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abideen Z, Koyro H-W, Huchzermeyer B, Ahmed MZ, Gul B, Khan MA (2014) Moderate salinity stimulates growth and photosynthesis of Phragmites karka by water relations and tissue specific ion regulation. Environ Exp Bot 105:70–76. https://doi.org/10.1016/j.envexpbot.2014.04.009

    CAS  Article  Google Scholar 

  2. Adnan MY, Hussain T, Asrar H, Hameed A, Gul B, Nielsen BL, Khan MA (2016) Desmostachya bipinnata manages photosynthesis and oxidative stress at moderate salinity. Flora 225:1–9. https://doi.org/10.1016/j.flora.2016.09.006

    Article  Google Scholar 

  3. Ahmad P, Ashraf M, Hakeem KR, Azooz M, Rasool S, Chandna R, Akram NA (2014) Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. J Plant Interact 9:1–9. https://doi.org/10.1080/17429145.2012.747629

    CAS  Article  Google Scholar 

  4. Ahmed MZ et al (2013) The influence of genes regulating transmembrane transport of Na+ on the salt resistance of Aeluropus lagopoides. Funct Plant Biol 40:860–871. https://doi.org/10.1071/FP12346

    CAS  Article  PubMed  Google Scholar 

  5. Asrar H, Hussain T, Hadi SMS, Gul B, Nielsen BL, Khan MA (2017) Salinity induced changes in light harvesting and carbon assimilating complexes of Desmostachya bipinnata (L.) Staph. Environ Exp Bot 135:86–95. https://doi.org/10.1016/j.envexpbot.2016.12.008

    CAS  Article  Google Scholar 

  6. Asrar H, Hussain T, Gul B, Khan MA, Nielsen BL (2018) Differential protein expression reveals salt tolerance mechanisms of Desmostachya bipinnata at moderate and high levels of salinity. Funct Plant Biol 45:793–812. https://doi.org/10.1071/FP17281

    CAS  Article  PubMed  Google Scholar 

  7. Asrar H, Hussain T, Qasim M, Nielsen BL, Gul B, Khan MA (2020) Salt induced modulations in antioxidative defense system of Desmostachya bipinnata. Plant Physiol Biochem 147:113–124. https://doi.org/10.1016/j.plaphy.2019.12.012

    CAS  Article  PubMed  Google Scholar 

  8. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58. https://doi.org/10.1080/07352680590910410

    CAS  Article  Google Scholar 

  9. Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/bf00018060

    CAS  Article  Google Scholar 

  10. Bell HL, Oeary JW (2003) Effects of salinity on growth and cation accumulation of Sporobolus virginicus (Poaceae). Am J Bot 90:1416–1424. https://doi.org/10.3732/ajb.90.10.1416

    Article  PubMed  Google Scholar 

  11. Ben Ahmed C, Magdich S, Ben Rouina B, Sensoy S, Boukhris M, Ben Abdullah F (2011) Exogenous proline effects on water relations and ions contents in leaves and roots of young olive. Amino Acids 40:565–573. https://doi.org/10.1007/s00726-010-0677-1

    CAS  Article  PubMed  Google Scholar 

  12. Bhatti AS, Steinert S, Sarwar G, Hilpert A, Jeschke WD (1993) Ion distribution in relation to leaf age in Leptochloa fusca (L.) Kunth (Kallar grass). New Phytol 123:539–545. https://doi.org/10.1111/j.1469-8137.1993.tb03766.x

    CAS  Article  Google Scholar 

  13. Bonales-Alatorre E, Pottosin I, Shabala L, Chen Z-H, Zeng F, Jacobsen S-E, Shabala S (2013) Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a halophyte species Chenopodium quinoa. Int J Mol Sci 14:9267–9285. https://doi.org/10.3390/ijms14059267

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Bose J et al (2014) Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+ permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley. Plant Cell Environ 37:589–600. https://doi.org/10.1111/pce.12180

    CAS  Article  PubMed  Google Scholar 

  15. Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2003) Variation in the shoot calcium content of angiosperms. J Exp Bot 54:1431–1446. https://doi.org/10.1093/jxb/erg143

    CAS  Article  PubMed  Google Scholar 

  16. Chaves M, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560. https://doi.org/10.1093/aob/mcn125

    CAS  Article  PubMed  Google Scholar 

  17. Conn S, Gilliham M (2010) Comparative physiology of elemental distributions in plants. Ann Bot 105:1081–1102. https://doi.org/10.1093/aob/mcq027

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Cuin TA, Shabala S (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875–885. https://doi.org/10.1111/j.1365-3040.2007.01674.x

    CAS  Article  PubMed  Google Scholar 

  19. Cuin TA, Tian Y, Betts SA, Chalmandrier R, Shabala S (2009) Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct Plant Biol 36:1110–1119. https://doi.org/10.1071/fp09051

    CAS  Article  Google Scholar 

  20. Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818. https://doi.org/10.1104/pp.104.057307

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128:379–387. https://doi.org/10.1104/pp.010524

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Epstein E (1972) Physiological genetics of plant nutrition. Mineral nutrition of plants: principles and perspectives. Wiley, New York, pp 325–344. https://doi.org/10.1017/S001447970000630X

  23. Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J Exp Bot 55:1115–1123. https://doi.org/10.1093/jxb/erh117

    CAS  Article  PubMed  Google Scholar 

  24. Galal TM, Shehata HS (2013) Morphological variations, biomass and ion accumulation of the aboveground shoots of Desmostachya bipinnata (L.). Stapf Flora 208:556–561. https://doi.org/10.1016/j.flora.2013.08.006

    Article  Google Scholar 

  25. Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Sign Behav 5:26–33. https://doi.org/10.3389/fpls.2014.00175

    CAS  Article  Google Scholar 

  26. Glenn E, Brown J (1998) Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil. Am J Bot 85:10. https://doi.org/10.2307/2446548

    CAS  Article  PubMed  Google Scholar 

  27. Godfray HCJ et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818. https://doi.org/10.1126/science.1185383

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Golla U, Gajam PK, Bhimathati SS (2014) Evaluation of diuretic and laxative activity of hydro-alcoholic extract of Desmostachya bipinnata (L.) Stapf in rats. J Integr Med 12:372–378. https://doi.org/10.1016/s2095-4964(14)60029-7

    Article  PubMed  Google Scholar 

  29. Groom PK, Lamont BB (1999) Which common indices of sclerophylly best reflect differences in leaf structure? Ecoscience 6:471–474. https://doi.org/10.1080/11956860.1999.1168253

    Article  Google Scholar 

  30. Guerrier G (1996) Fluxes of Na+, K+ and Cl-, and osmotic adjustment in Lycopersicon pimpinellifolium and L. esculentum during short and long term exposures to NaCl. Physiol Plant 97:583–591. https://doi.org/10.1111/j.1399-3054.1996.tb00519.x

    CAS  Article  Google Scholar 

  31. Gulzar S, Khan M, Liu X (2007) Seed germination strategies of Desmostachya bipinnata: a fodder crop for saline soils. Rangl Ecol Manag 60:401–407. https://doi.org/10.2458/azu_jrm_v60i4_gulzar

    Article  Google Scholar 

  32. Hajiboland R, Norouzi F, Poschenrieder C (2014) Growth, physiological, biochemical and ionic responses of pistachio seedlings to mild and high salinity. Trees 28:1065–1078. https://doi.org/10.1007/s00468-014-1018-x

    CAS  Article  Google Scholar 

  33. Hoffmann WA, Poorter H (2002) Avoiding bias in calculations of relative growth rate. Ann Bot 90:37–42. https://doi.org/10.1093/aob/mcf140

    Article  PubMed  PubMed Central  Google Scholar 

  34. Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727. https://doi.org/10.1104/pp.106.088864

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Hussain T, Koyro H-W, Huchzermeyer B, Khan MA (2015) Eco-physiological adaptations of Panicum antidotale to hyperosmotic salinity: Water and ion relations and anti-oxidant feedback. Flora Morphol Distrib Funct Ecol Plant 212:30–37. https://doi.org/10.1016/j.flora.2015.02.006

    Article  Google Scholar 

  36. Hussin S, Geissler N, Koyro H-W (2013) Effect of NaCl salinity on Atriplex nummularia (L.) with special emphasis on carbon and nitrogen metabolism. Acta Physiol Plant 35:1025–1038. https://doi.org/10.1007/s11738-012-1141-5

    CAS  Article  Google Scholar 

  37. Koyro HW (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot 56:136–146. https://doi.org/10.1016/j.envexpbot.2005.02.001

    CAS  Article  Google Scholar 

  38. Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic press, New York. https://doi.org/10.1016/S0176-1617(97)80106-X

  39. Lee G, Carrow RN, Duncan RR, Eiteman MA, Rieger MW (2008) Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environ Exp Bot 63:19–27. https://doi.org/10.1186/1999-3110-55-31

    CAS  Article  Google Scholar 

  40. Ludwig TG, Goldberg HJ (1956) The anthrone method for the determination of carbohydrates in foods and in oral rinsing. J Dent Res 35:90–94. https://doi.org/10.1177/00220345560350012301

    CAS  Article  PubMed  Google Scholar 

  41. Marcum KB (2008) Relative salinity tolerance of Turfgrass species and cultivars. https://doi.org/10.1201/9781420006483.ch24

  42. Meychik NR, Nikolaeva YI, Yermakov IP (2013) Physiological response of halophyte (Suaeda altissima (L.) Pall.) and glycophyte (Spinacia oleracea L.) to salinity. Am J Plant Sci 4:427–440. https://doi.org/10.4236/ajps.2013.42A055

    CAS  Article  Google Scholar 

  43. Misra N, Saxena P (2009) Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci 177:181–189. https://doi.org/10.1016/j.plantsci.2009.05.007

    CAS  Article  Google Scholar 

  44. Moinuddin M, Gulzar S, Ahmed MZ, Gul B, Koyro H-W, Khan MA (2014) Excreting and non-excreting grasses exhibit different salt resistance strategies. AoB Plants 6:plu038. https://doi.org/10.1093/aobpla/plu038

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x

    CAS  Article  PubMed  Google Scholar 

  46. Munns R (2011) Plant adaptations to salt and water stress: differences and commonalities. Adv Bot Res 57:1–32. https://doi.org/10.1016/B978-0-12-387692-8.00001-1

    CAS  Article  Google Scholar 

  47. Naidoo G, Somaru R, Achar P (2008) Morphological and physiological responses of the halophyte, Odyssea paucinervis (Staph) (Poaceae), to salinity. Flora- 203:437–447. https://doi.org/10.1016/j.flora.2007.08.003

    Article  Google Scholar 

  48. Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity. Crop Sci 44:797–805. https://doi.org/10.2135/cropsci2004.0797

    CAS  Article  Google Scholar 

  49. Panta S, Flowers T, Lane P, Doyle R, Haros G, Shabala S (2014) Halophyte agriculture: success stories. Environ Exp Bot 107:71–83. https://doi.org/10.1016/j.envexpbot.2014.05.006

    Article  Google Scholar 

  50. Pitman M (1965) Sodium and potassium uptake by seedlings of Hordeum vulgare. Aust J Biol Sci 18:10–24. https://doi.org/10.1071/BI9650010

    CAS  Article  Google Scholar 

  51. Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Funct Plant Biol 27:1191–1191. https://doi.org/10.1071/PP99173

    Article  Google Scholar 

  52. Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x

    Article  PubMed  Google Scholar 

  53. Pottosin I, Velarde-Buendía A-M, Dobrovinskaya O (2014) Potassium and sodium transport channels under nacl stress. In: Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, pp 325–359. https://doi.org/10.1007/978-1-4614-8600-8

  54. Rahnama A, Munns R, Poustini K, Watt M (2011) A screening method to identify genetic variation in root growth response to a salinity gradient. J Exp Bot 62:69–77. https://doi.org/10.1093/jxb/erq359

    CAS  Article  PubMed  Google Scholar 

  55. Rajaravindran M, Natarajan S (2012) Effects of salinity stress on growth and biochemical constituents of the halophyte Sesuvium portulacastrum. Int J Res Biol Sci 2:18–25

    Google Scholar 

  56. Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:185–205. https://doi.org/10.1146/annurev.arplant.57.032905.105441

    CAS  Article  Google Scholar 

  57. Roy S, Chakraborty U (2014) Salt tolerance mechanisms in Salt Tolerant Grasses (STGs) and their prospects in cereal crop improvement. Bot Stud 55:31. https://doi.org/10.1186/1999-3110-55-31

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Sabir P, Ashraf M, Akram NA (2011) Accession variation for salt tolerance in proso millet (Panicum miliaceum L.) using leaf proline content and activities of some key antioxidant enzymes. J Agron Crop Sci 197:340–347. https://doi.org/10.1111/j.1439-037X.2011.00471.x

    CAS  Article  Google Scholar 

  59. Sánchez E, López-Lefebre LR, García PC, Rivero RM, Ruiz JM, Romero L (2001) Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv. Strike). J Plant Physiol 158:593–598. https://doi.org/10.1078/0176-1617-00268

    Article  Google Scholar 

  60. Scholander PF, Hammel H, Bradstreet ED, Hemmingsen E (1965) Sap pressure in vascular plants. Science 148:339–346. https://doi.org/10.1126/science.148.3668.339

    CAS  Article  PubMed  Google Scholar 

  61. Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot. https://doi.org/10.1093/aob/mct205

    Article  PubMed  PubMed Central  Google Scholar 

  62. Silva PA et al (2015) Comprehensive analysis of the endoplasmic reticulum stress response in the soybean genome: conserved and plant-specific features. BMC Genom 16:783. https://doi.org/10.1186/s12864-015-1952-z

    CAS  Article  Google Scholar 

  63. Silveira JAG, Araújo SAM, Lima JPMS, Viégas RA (2009) Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environ Exp Bot 66:1–8. https://doi.org/10.1016/j.envexpbot.2008.12.015

    CAS  Article  Google Scholar 

  64. Sobhanian H, Motamed N, Jazii FR, Nakamura T, Komatsu S (2010) Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant. J Prot Res 9:2882–2897. https://doi.org/10.1021/pr900974k

    CAS  Article  Google Scholar 

  65. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527. https://doi.org/10.1093/aob/mcg058

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Wang C-M et al (2009) Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+. Plant Cell Environ 32:486–496. https://doi.org/10.1111/j.1365-3040.2009.01942.x

    CAS  Article  PubMed  Google Scholar 

  67. Wang Z, Hessler CM, Xue Z, Seo Y (2012) The role of extracellular polymeric substances on the sorption of natural organic matter. Water Res 46:1052–1060. https://doi.org/10.1016/j.watres.2011.11.077

    CAS  Article  PubMed  Google Scholar 

  68. Wu H et al (2015) Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00071

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yemm E, Willis A (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508. https://doi.org/10.1042/bj0570508

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Pakistan-U.S. Science and Technology Cooperation Program of Higher Education. Commission of Pakistan and U.S. Department of State.

Funding

This work was partially funded by the Higher Education Commission of Pakistan and U.S. Department of State (Grand number 4-410/PAK-US/HEC/2010/ 883).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Yousuf Adnan or Tabassum Hussain.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by E. Kuzniak-Gebarowska.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 307 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adnan, M.Y., Hussain, T., Ahmed, M.Z. et al. Growth regulation of Desmostachya bipinnata by organ-specific biomass, water relations, and ion allocation responses to improve salt resistance. Acta Physiol Plant 43, 38 (2021). https://doi.org/10.1007/s11738-021-03211-7

Download citation

Keywords

  • Ion distribution
  • Osmotic management
  • Organ specific
  • Salt stress