Physiological resistance of Sasa argenteostriata (Regel) E.G. Camus in response to high-concentration soil Pb stress

Abstract

Dwarf bamboo Sasa argenteostriata (Regel) E.G. Camus has previously been considered as potential plant for metal phytoremediation. However, the dynamic responses and correlations among physiological resistances to high-concentration Pb exposure have not been described to date. This study conducted four Pb treatments (0, 1500, 3000, and 4500 mg kg–1) to examine the physiological resistance responses at days 7, 14, and 21. The findings showed that S. argenteostriata can regulate both the enzymatic system and the nonenzymatic system to synergistically overcome Pb damage. In addition, a significant positive correlation was found between enzymes and nonenzymatic substances, which were particularly apparent with regard to the superoxide dismutase (SOD) activities with phytochelatins (PCs) levels, peroxidase (POD), and glutathione reductase (GR) activities with glutathione (GSH) levels, as well as catalase (CAT) and ascorbate peroxidase (APX) activities with soluble protein (SP) levels. Furthermore, Pb concentration was the main factor that induced the physiological responses of S. argenteostriata to Pb stress. The antioxidant enzyme system and the AsA–GSH cycle were dominant resistance mechanisms under 1500 mg kg–1 Pb. AsA–GSH cycle and plant cell chelation were dominant resistance mechanisms under 3000 mg kg–1 Pb. Antioxidant enzymes and plant cell chelation were dominant resistance mechanisms under 4500 mg kg–1 Pb. This study provides comprehensive evidence regarding how both enzymatic and nonenzymatic systems of S. argenteostriata cooperate to alleviate the high-concentration soil Pb stress. The results highlight the environmental remediation potential of this species for Pb-contaminated media.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Anjum SA, Tanveer M, Hussain S, Shahzad B, Ashraf U, Fahad S, Hassan W, Jan S, Khan I, Saleem MF, Bajwa AA, Wang LC, Mahmood A, Samad BA, Tung SA (2016) Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Eviron Sci Pollut Res 23(12):11864–11875

    CAS  Google Scholar 

  2. Bashri G, Prasad SM (2016) Exogenous IAA differentially affects growth, oxidative stress and antioxidants system in Cd stressed Trigonella foenum-graecum L. seedlings: toxicity alleviation by up-regulation of ascorbate–glutathione cycle. Ecotoxicol Environ Safe 132:329–338

    CAS  Google Scholar 

  3. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  4. Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  5. Chen JR, Shafi M, Wang Y, Wu JS, Ye ZQ, Liu C, Zhong B, Guo H, He LZ, Liu D (2016) Organic acid compounds in root exudation of Moso Bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals. Environ Sci Pollut Res 23:20977–20984

    CAS  Google Scholar 

  6. Cheng XF, Danek T, Drozdova J, Huang QR, Zou LL, Yang S, Zhao XL, Xiang YG (2018) Soil heavy metal pollution and risk assessment associated with the Zn–Pb mining region in Yunnan, Southwest China. Environ Monit Assess 19:190–210

    Google Scholar 

  7. Cheng X, Li H, Yang Y, Xu YP, Huang X, Deng G (2019) Protein changes in response to lead stress of lead-tolerant and lead-sensitive industrial hemp using SWATH Technology. Genes 10(5):396–421

    Google Scholar 

  8. Emamverdian A, Ding Y (2017) HMs induced changes on growth, antioxidant enzyme’s activity, gas exchange parameters and protein structures in Sasa kongosanensis f. aureo-striatus. Pol J Environ Stud 26:585–592

    CAS  Google Scholar 

  9. Estrella-Gómez N, Mendoza-Cózatl D, Moreno-Sánchez R, González-Mendoza D, Zapata-Pérez O, Martínez-Hernández A, Santamaría JM (2009) The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb2+ by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity. Aquat Toxicol 91(4):320–328

    PubMed  Google Scholar 

  10. Figueroa JAL, Wrobel K, Afton S, Caruso J, Gutiérrez-Corona FJ, Wrobel K (2008) Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico. Chemosphere 70:2084–2091

    CAS  PubMed  Google Scholar 

  11. Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    CAS  Google Scholar 

  12. Gasic K, Korban SS (2008) Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225:1277–1285

    Google Scholar 

  13. Goswami S, Das S (2016) Copper phytoremediation potential of Calendula officinalis L. and the role of antioxidant enzymes in metal tolerance. Ecotoxicol Environ Safe 126:211–218

    CAS  Google Scholar 

  14. Gupta DK, Huang HG, Yang XE, Razafindrabe BHN, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177(1–3):437–444

    CAS  PubMed  Google Scholar 

  15. Hasanuzzaman M, Nahar K, Rahman A, Mahmud AJ, Alharby HF, Fujita M (2018) Exogenous glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense and physiological mechanism. J Plant Interact 13(1):203–212

    CAS  Google Scholar 

  16. Hou XL, Han H, Meng RF, Cai PL, Liu AQ (2019) Intermittent lead-induced stress on antioxidant enzyme activity and subcellular distribution of Pb in Pogonatherum crinitum seedlings. Plant Biol (Stuttg) 21:634–542

    CAS  Google Scholar 

  17. Jayasri MA, Suthindhiran K (2017) Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation. Appl Water Sci 7:1247–1253

    CAS  Google Scholar 

  18. Jiang MY, Liu SL, Li YF, Li X, Luo ZH, Song HX, Chen QB (2019) EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. Ecotoxicol Environ Safe 170:502–512

    CAS  Google Scholar 

  19. Kaya C, Akram NA, Sürücü A, Ashraf M (2019) Alleviating effect of nitric oxide on oxidative stress and antioxidant defence system in pepper (Capsicum annuum L.) plants exposed to cadmium and lead toxicity applied separately or in combination. Hortic Res England 225:52–60

    Google Scholar 

  20. Khan MM, Islam E, Irem S, Irem S, Akhta K, Ashraf YM, Iqbal J, Liu D (2018) Pb-induced phytotoxicity in para grass (Brachiaria mutica) and castorbean (Ricinus communis L.): antioxidant and ultrastructural studies. Chemosphere 200:254–257

    Google Scholar 

  21. Lago-Vila M, Arenas-Lago D, Rodriguez-Seijo A, Andrade-Couce M (2019) Ability of Cytisus scoparius for phytoremediation of soils from a Pb/Zn mine: assessment of metal bioavailability and bioaccumulation. J Environ Manage 235:152–160

    CAS  PubMed  Google Scholar 

  22. Li YY, Wang HB, Wang HJ, Yin F, Yang XY, Hu YJ (2014) Heavy metal pollution in vegetables grown in the vicinity of a multi-metal mining area in Gejiu, China: total concentrations, speciation analysis, and health risk. Eviron Sci Pollut Res 21:12569–12582

    CAS  Google Scholar 

  23. Li S, Chen JR, Islam E, Wang Y, Wu JS, Ye ZQ, Yan WB, Peng DL, Liu D (2016) Cadmium-induced oxidative stress, response of antioxidants and detection of intracellular cadmium in organs of moso bamboo (Phyllostachys pubescens) seedlings. Chemosphere 153:107–114

    CAS  PubMed  Google Scholar 

  24. Li JT, Gurajali KH, Wu LH, Ent A, Qiu RL, Baker JMA, Tang Y, Yang XE, Shu WS (2018) Hyperaccumulator plants from China: a synthesis of the current state of knowledge. Environ Sci Technol 52:11980–11994

    CAS  PubMed  Google Scholar 

  25. Liu DH, Zou J, Meng QM, Zou HJ, Jiang WS (2009) Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology 18:134–143

    CAS  PubMed  Google Scholar 

  26. Liu D, Chen JR, Mshmood Q, Li S, Wu JS, Ye ZQ, Peng DL, Yan WB, Lu KP (2014) Effect of Zn toxicity on root morphology, ultrastructure, and the ability to accumulate Zn in Moso bamboo (Phyllostachys pubescens). Environ Sci Pollut Res 21:13615–13624

    CAS  Google Scholar 

  27. Liu SL, Luo YM, Yang R, He CX, Cheng QS, Tao JJ, Ren B, Wang M, Ma MD (2015a) High resource-capture and -use efficiency, and effective antioxidant protection contribute to the invasiveness of Alnus formosana plants. Plant Physiol Biochem 96:436–447

    CAS  PubMed  Google Scholar 

  28. Liu SL, Yang RJ, Ma MD, Dan F, Zhao Y, Jiang P, Wang MH (2015b) Effects of exogenous NO on the growth, mineral nutrient content, antioxidant system, and ATPase activities of Trifolium repens L. plants under cadmium stress. Acta Physiol Plant 37:1721–1737

    Google Scholar 

  29. Liu SL, Yang RJ, Pan YZ, Ma MM, Pan J, Zhao Y, Cheng QS, Wu MX, Wang MH, Zhang L (2015c) Nitric oxide contributes to minerals absorption, proton pumps and hormone equilibrium under cadmium excess in Trifolium repens L. plants. Ecotoxicol Environ Safe 119:35–46

    CAS  Google Scholar 

  30. Liu SL, Yang RJ, Pan YZ, Wang MH, Hu J, Wu MX, Zhao Y, Zhang L, Ma MD (2015d) Exogenous NO depletes Cd-induced toxicity by eliminating oxidative damage, re-establishing ATPase activity, and maintaining stress-related hormone equilibrium in white clover plants. Environ Sci Pollut Res 22:16843–16856

    CAS  Google Scholar 

  31. Liu SL, Yang RJ, Pan YZ, Ren B, Chen QB, Li X, Xiong X, Tao JJ, Cheng QS, Ma MD (2016) Beneficial behavior of nitric oxide in copper-treated medicinal plants. J Hazard Mater 314:140–154

    CAS  PubMed  Google Scholar 

  32. Liu SL, Yang RJ, Tripathi DK, Li X, He W, Wu MX, Ali S, Ma MD, Cheng QS, Pan YZ (2018) The interplay between reactive oxygen and nitrogen species contributes in the regulatory mechanism of the nitro-oxidative stress induced by cadmium in Arabidopsis. J Hazard Mater 344:1007–1024

    CAS  PubMed  Google Scholar 

  33. López-Orenes A, Celeste Dias M, Ángeles Ferrer M, Calderón A, Moutinho-Pereira J, Correi C, Santos C (2018) Different mechanisms of the metalliferous Zygophyllum fabago shoots and roots to cope with Pb toxicity. Environ Sci Pollut Res 25:1319–1330

    Google Scholar 

  34. Ma FW, Cheng LL (2003) The sun-exposed peel of apple fruit has higher xanthophyll cycle-dependent thermal dissipation and antioxidants of the ascorbate–glutathione pathway than the shaded peel. Plant Sci 165(4):819–827

    CAS  Google Scholar 

  35. Mahdavian K, Ghaderian SM, Schat H (2016) Pb accumulation, Pb tolerance, antioxidants, thiols, and organic acids in metallicolous and non-metallicolous Peganum harmala L. under Pb exposure. Environ Exp Bot 126:21–31

    CAS  Google Scholar 

  36. Mahmud JA, Hasanuzzaman M, Nahar K, Borhannuddin Bhuyan MHM, Fujita M (2018) Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol Environ Safe 147:990–1001

    CAS  Google Scholar 

  37. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  38. Niu LM, Cao R, Kang JQ, Xu Z (2018) Ascorbate–glutathione cycle and ultrastructural analyses of two kenaf cultivars (Hibiscus cannabinus L.) under chromium stress. Int J Environ Res Public Health 15:1467–1480

    PubMed Central  Google Scholar 

  39. Pei FW, Song HZ, Chao W, Lu J (2012) Effects of Pb on the oxidative stress and antioxidant response in a Pb bioaccumulator plant Vallisneria natans. Ecotoxicol Environ Safe 78:28–34

    Google Scholar 

  40. Qureshi MI, Abdin MZ, Qadir S, Iqbal M (2007) Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl. Biol Plantarum (Prague) 51:121–128

    CAS  Google Scholar 

  41. Sabreen S, Sugiyama S (2008) Cadmium phytoextraction capacity in eight C3 herbage grass species. Grassl Sci 54:27–32

    Google Scholar 

  42. Saleem M, Naeem H, Zahir AZ, Shahid M (2018) Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil. Chemosphere 195:606–614

    CAS  PubMed  Google Scholar 

  43. Shen CH, Krishnamutrthy R, Yeh KW (2009) Decreased L–ascorbate content mediating bolting is mainly regulated by the galacturonate pathway in Oncidium. Plant Cell Physiol 50(5):935–946

    CAS  PubMed  Google Scholar 

  44. Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sic 15:89–97

    CAS  Google Scholar 

  45. Wan XM, Lei M, Chen TB (2016) Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci Total Environ 563–564:796–802

    PubMed  Google Scholar 

  46. Wang PF, Zhang SH, Wang C, Lu J (2012) Effects of Pb on the oxidative stress and antioxidant response in a Pb bioaccumulator plant Vallisneria natans. Ecotoxicol Environ Safe 78:28–34

    CAS  Google Scholar 

  47. Wu MX, Luo Q, Zhao Y, Long Y, Pan YZ (2018) Physiological and biochemical mechanisms preventing Cd toxicity in the New hyperaccumulator Abelmoschus manihot. J Plant Growth Regul 37:709–718

    CAS  Google Scholar 

  48. Xu J, Cai QY, Wang HX, Liu XJ, Lv J, Yao DF, Lu Y, Li W, Liu YY (2017) Study of the potential of barnyard grass for the remediation of Cd- and Pb-contaminated soil. Environ Monit Assess 189:189–224

    Google Scholar 

  49. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    CAS  Google Scholar 

  50. Yang QQ, Li ZY, Lu XN, Duan QN, Huang L, Bi J (2018) A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ 642:690–700

    CAS  PubMed  Google Scholar 

  51. Zhang LL, Zhu XM, Kuang YW (2017) Responses of Pinus massoniana seedlings to lead stress. Biol Plantarum 61:785–790

    CAS  Google Scholar 

  52. Zhong B, Chen J, Shafi M, Guo J (2017) Effect of lead (Pb) on antioxidation system and accumulation ability of Moso bamboo (Phyllostachys pubescens). Ecotoxicol Environ Safe 138:71–77

    Google Scholar 

  53. Zhong WX, Xie CC, Hu D, Pu SY, Xiong X, Ma J, Sun LX, Huang Z, Jiang MY, Li X (2020) Effect of 24-epibrassinolide on reactive oxygen species and antioxidative defense systems in tall fescue plants under lead stress. Ecotoxicol Environ Safe 187:109831

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support from the National Natural Science Foundation of China (Grant no. 31700541) and the science and technology program of returned scholars from the department of human resources and social security, Sichuan province, China (Grant no. 03120270).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mingyan Jiang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by M. Capuana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Liao, J., Yang, Y. et al. Physiological resistance of Sasa argenteostriata (Regel) E.G. Camus in response to high-concentration soil Pb stress. Acta Physiol Plant 43, 21 (2021). https://doi.org/10.1007/s11738-020-03197-8

Download citation

Keywords

  • Lead stress
  • Antioxidant enzyme system
  • Nonenzymatic system
  • Correlation analysis
  • Resistance contribution