Differential oxidative stress responses in Brassica juncea (L.) Czern and Coss cultivars induced by cadmium at germination and early seedling stage

Abstract

Heavy metal contamination is a major trouble across the world. In India, there have been many reports of heavy metal pollution due to speedy industrialization and urbanization. The Indian brown mustard is an important oil yielding crop. However, the response of Indian mustard at germination and early seedlings stages to heavy metals like cadmium (Cd) stress is not clear. Current work renders a perceptivity into the part played by enzymatic and non-enzymatic antioxidants towards differential response of Cd (0, 0.5, and 1.0 mM doses) stress in mustard cultivars (Pusa bold, Pusa bahar, and Pusa agrani). The results show that irrespective of dose, Cd severely hamper germination and retard the early seedling growth in mustard cultivars. Pusa bold showed comparatively less reduction in seedling growth as compared to Pusa bahar and Pusa argani. Oxidative stress as measured by lipid peroxidation (MDA), hydrogen peroxide (H2O2), lipoxygenase (LOX), and cell death was significantly less in Pusa bold than Pusa agrani. Chlorophyll and carotenoids’ content was significantly reduced in Pusa agrani compared to Pusa bold. On the other hand, antioxidant metabolites (proline, ascorbate, and glutathione) showed increased accumulation under Cd stress in Indian mustard; also was the case with antioxidant enzymes (superoxide dismutase, catalase, glutathione-s-transferase, glutathione reductase, ascorbate peroxidase, and peroxidase), which significantly (p < 0.001) increased in Pusa bold when compared to other two. This work brings into limelight the significant role of enzymatic and non-enzymatic antioxidants in three varieties of Indian mustard under Cd stress during germination and early seedling growth. The three cultivars in order of decreasing sensitivity to Cd: Pusa agrani > Pusa bahar > Pusa bold

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdul-Baki AA, Anderson JD (1973) Vigor determination in soybean seed by multiple criteria 1. Crop Sci 13:630–633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x

    Article  Google Scholar 

  2. Aery NC, Rana DK (2003) Growth and cadmium uptake in barley under cadmium stress. J Environ Biol 24:117–123

    CAS  PubMed  Google Scholar 

  3. Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x

    CAS  Article  Google Scholar 

  4. Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. In: Meister A (ed) Methods in enzymology. Academic Press, Cambridge, pp 548–555

    Google Scholar 

  5. Anjum SA, Tanveer M, Hussain S, Bao M, Wang L, Khan I, Ullah E, Tung SA, Samad RA, Shahzad B (2015) Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res 22:17022–17030. https://doi.org/10.1007/s11356-015-4882-z

    CAS  Article  Google Scholar 

  6. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    CAS  Article  PubMed  Google Scholar 

  7. Aravind P, Prasad MN (2003) Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem 41(4):391–397. https://doi.org/10.1016/S0981-9428(03)00035-4

    CAS  Article  Google Scholar 

  8. Arnon DI (1949) Copper enzymes in isolated chloroplast of polyphenoloxidase in Beta Vulgaris. Plant Physiol 24:1–1

    CAS  Article  Google Scholar 

  9. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Article  Google Scholar 

  10. Bauddh K, Singh RP (2011) Differential toxicity of cadmium to mustard (Brassica juncia L.) genotypes under higher metal levels. J Environ Biol 32:355

    CAS  PubMed  Google Scholar 

  11. Bohra A, Sanadhya D (2015) Phytotoxic effects of cadmium on seed germination and seedling growth of Brassica juncea L. Czern Coss cv. Int Res J Biol Sci 4:80–86

    Google Scholar 

  12. Borgohain P, Saha B, Agrahari R, Chowardhara B, Sahoo S, van der Vyver C, Panda SK (2019) SlNAC2 overexpression in Arabidopsis results in enhanced abiotic stress tolerance with alteration in glutathione metabolism. Protoplasma 256(4):1065–1077

    CAS  Article  Google Scholar 

  13. Bouziani Y, Degaichia H, Benmoussa M (2019) Effect of cadmium on the germinative parameters of bread wheat. Rev Mex Cienc Agríc 10:301–309. https://doi.org/10.29312/remexca.v10i2.1476

    Article  Google Scholar 

  14. Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol. https://doi.org/10.1016/S0076-6879(55)02300-8

    Article  Google Scholar 

  15. Chen L, Wang X, Zhang F, Xing D, Zhang M (2019) Effects of cadmium stress on seed germination of ten mulberry varieties. J South Agric 50:257–263

    Google Scholar 

  16. Chen X, Wang J, Shi Y, Zhao MQ, Chi GY (2011) Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Bot Stud 52(1):41–46

    CAS  Google Scholar 

  17. Cheng K, Tian HZ, Zhao D, Lu L, Wang Y, Chen J, Liu XG, Jia WX, Huang Z (2014) Atmospheric emission inventory of cadmium from anthropogenic sources. Int J Environ Sci Technol 11:605–616. https://doi.org/10.1007/s13762-013-0206-3

    CAS  Article  Google Scholar 

  18. Choudhury S, Panda SK (2004) Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulg J Plant Physiol 30:95–110

    CAS  Google Scholar 

  19. Chowardhara B, Borgohain P, Saha B, Awasthi JP, Moulick D, Panda SK (2019) Phytotoxicity of Cd and Zn on three popular Indian mustard varieties during germination and early seedling growth. Biocatal Agric Biotechnol 21:101349

    Article  Google Scholar 

  20. D’souza RM, Devaraj VR (2012) Induction of oxidative stress and antioxidative mechanisms in hyacinth bean under zinc stress. Afr Crop Sci J 20:17–19

    Google Scholar 

  21. Daud MK, Ali S, Variath MT, Zhu SJ (2013) Differential physiological, ultramorphological and metabolic responses of cotton cultivars under cadmium stress. Chemosphere 93(10):2593–2602

    CAS  Article  Google Scholar 

  22. Davis DG, Swanson HR (2001) Activity of stress-related enzymes in the perennial weed leafy spurge (Euphorbia esula L.). Environ Exp Bot 46(2):95–108. https://doi.org/10.1016/S0098-8472(01)00081-8

    CAS  Article  Google Scholar 

  23. Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2013) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35:1281–1289. https://doi.org/10.1007/s11738-012-1167-8

    CAS  Article  Google Scholar 

  24. Dinakar N, Nagajyothi PC, Suresh S, Damodharam T, Suresh C (2009) Cadmium induced changes on proline, antioxidant enzymes, nitrate and nitrite reductases in Arachis hypogaea L. J Environ Biol 30:289–294

    CAS  PubMed  Google Scholar 

  25. Ekmekçi Y, Tanyolac D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611. https://doi.org/10.1016/j.jplph.2007.01.017

    CAS  Article  PubMed  Google Scholar 

  26. Fagerberg B, Barregard L, Sallsten G, Forsgard N, Östling G, Persson M, Borné Y, Engström G, Hedblad B (2015) Cadmium exposure and atherosclerotic carotid plaques—results from the Malmö diet and Cancer study. Environ Res 136:67–74. https://doi.org/10.1016/j.envres.2014.11.004

    CAS  Article  PubMed  Google Scholar 

  27. Fojtová M, Kovařík A (2000) Genotoxic effect of cadmium is associated with apoptotic changes in tobacco cells. Plant Cell Environ 23:531–537

    Article  Google Scholar 

  28. Gill SS, Khan NA, Tuteja N (2011a) Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars: an evaluation of the role of antioxidant machinery. Plant Signal Behav 6:293–300. https://doi.org/10.4161/psb.6.2.15049

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Gill SS, Khan NA, Tuteja N (2011b) Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars: an evaluation of the role of antioxidant machinery. Plant Signal Behav 6:293–300. https://doi.org/10.4161/psb.6.2.15049

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Guo J, Qin S, Rengel Z, Gao W, Nie Z, Liu H, Li C, Zhao P (2019) Cadmium stress increases antioxidant enzyme activities and decreases endogenous hormone concentrations more in Cd-tolerant than Cd-sensitive wheat varieties. Ecotoxicol Environ Saf 172:380–387

    CAS  Article  Google Scholar 

  31. Gupta AS, Webb RP, Holaday AS, Allen RD (1993) Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physiol 103:1067–1073. https://doi.org/10.1104/pp.103.4.1067

    Article  PubMed  PubMed Central  Google Scholar 

  32. Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods in enzymology. Academic Press, Cambridge, pp 398–405. https://doi.org/10.1016/S0076-6879(81)77053-8

    Google Scholar 

  33. He J, Ren Y, Chen X, Chen H (2014) Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicol Environ Saf 108:114–119. https://doi.org/10.1016/j.ecoenv.2014.05.021

    CAS  Article  PubMed  Google Scholar 

  34. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. https://doi.org/10.1590/S1677-04202011000200005

    CAS  Article  PubMed  Google Scholar 

  35. Heidari M, Sarani S (2011) Effects of lead and cadmium on seed germination, seedling growth and antioxidant enzymes activities of mustard (Sinapis arvensis L.). ARPN J Agric Biol Sci 6:44–47

    Google Scholar 

  36. Iannelli MA, Pietrini F, Fiore L, Petrilli L, Massacci A (2002) Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol Biochem 40:977–982

    CAS  Article  Google Scholar 

  37. Irfan M, Ahmad A, Hayat S (2014) Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi J Biol Sci 21:125–131. https://doi.org/10.1016/j.sjbs.2013.08.001

    CAS  Article  PubMed  Google Scholar 

  38. Jali P, Pradhan C, Das AB (2016) Effects of cadmium toxicity in plants: a review article. Sch Acad J Biosci 4:1074–1081. https://doi.org/10.21276/sajb.2016.4.12.3

    CAS  Article  Google Scholar 

  39. Kapoor D, Kaur S, Bhardwaj R (2014) Physiological and biochemical changes in Brassica juncea plants under Cd-induced stress. BioMed Res Int 214:13

    Google Scholar 

  40. Khan MY, Prakash V, Yadav V, Chauhan DK, Prasad SM, Ramawat N, Singh VP, Tripathi DK, Sharma S (2019) Regulation of cadmium toxicity in roots of tomato by indole acetic acid with special emphasis on reactive oxygen species production and their scavenging. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2019.05.006

    Article  PubMed  Google Scholar 

  41. Küpper H, Andresen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8:269–285. https://doi.org/10.1039/c5mt00244c

    Article  PubMed  Google Scholar 

  42. Li Y (2008) Effect of salt stress on seed germination and seedling growth of three salinity plants. Pak J Biol Sci 11:1268–1272. https://doi.org/10.3923/pjbs.2008.1268.1272

    CAS  Article  PubMed  Google Scholar 

  43. Li Y, Zhang S, Jiang W, Liu D (2013) Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L. Environ Sci Pollut Res 20:1117–1123

    CAS  Article  Google Scholar 

  44. Liu JG, Zhang YX, Shi PL, Chai TY (2012a) Effect of cadmium on seed germination and antioxidative enzymes activities in cotyledon of Solanum nigrum L. J Agro Environ Sci 31:880–884

    CAS  Google Scholar 

  45. Liu S, Yang C, Xie W, Xia C, Fan P (2012b) The effects of cadmium on germination and seedling growth of Suaeda salsa. Proc Environ Sci 16:293–298. https://doi.org/10.1016/j.proenv.2012.10.041

    CAS  Article  Google Scholar 

  46. Lu C, Zhang J (2000) Photosynthetic CO2 assimilation, chlorophyll fluorescence and photoinhibition as affected by nitrogen deficiency in maize plants. Plant Sci 151:135–143. https://doi.org/10.1016/S0168-9452(99)00207-1

    CAS  Article  PubMed  Google Scholar 

  47. Lux A, Martinka M, Vaculík M, White PJ (2010) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37. https://doi.org/10.1093/jxb/erq281

    CAS  Article  PubMed  Google Scholar 

  48. Marchiol L, Assolari S, Fellet G, Zerbi G (2006) Germination and seedling growth of Indian mustard exposed to cadmium and chromium. Ital J Agron 31:45–50

    Article  Google Scholar 

  49. Mayer AM, Harel E, Ben-Shaul R (1966) Assay of catechol oxidase—a critical comparison of methods. Phytochemistry 5:783–789. https://doi.org/10.1016/S0031-9422(00)83660-2

    CAS  Article  Google Scholar 

  50. Mishra S, Srivastava S, Tripathi RD, Dwivedi S, Shukla MK (2008) Response of antioxidant enzymes in coontail (Ceratophyllum demersum L.) plants under cadmium stress. Environ Toxicol 23:294–301. https://doi.org/10.1002/tox.20340

    CAS  Article  PubMed  Google Scholar 

  51. Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610. https://doi.org/10.1016/j.jplph.2006.03.003

    CAS  Article  PubMed  Google Scholar 

  52. Mohamed AA, Castagna A, Ranieri A, di Toppi LS (2012) Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol Biochem 57:15–22. https://doi.org/10.1016/j.plaphy.2012.05.002

    CAS  Article  PubMed  Google Scholar 

  53. Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol Int J 22(4):368–374. https://doi.org/10.1002/tox.20273

    CAS  Article  Google Scholar 

  54. Moulick D, Ghosh D, Santra SC (2016) Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol Biochem 109:571–578. https://doi.org/10.1016/j.plaphy.2016.11.004

    CAS  Article  PubMed  Google Scholar 

  55. Moulick D, Santra SC, Ghosh D (2017) Seed priming with Se alleviate As induced phytotoxicity during germination and seedling growth by restricting As translocation in rice (Oryza sativa L cv IET-4094). Ecotoxicol Environ Saf 145:449–456. https://doi.org/10.1016/j.ecoenv.2017.07.060

    CAS  Article  PubMed  Google Scholar 

  56. Moulick D, Santra SC, Ghosh D (2018) Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain. Ecotoxicol Environ Saf 152:67–77. https://doi.org/10.1016/j.ecoenv.2018.01.037

    CAS  Article  PubMed  Google Scholar 

  57. Murtaza B, Naeem F, Shahid M, Abbas G, Shah NS, Amjad M, Bakhat HF, Imran M, Niazi NK, Murtaza G (2019) A multivariate analysis of physiological and antioxidant responses and health hazards of wheat under cadmium and lead stress. Environ Sci Pollut Res 26:362–370

    CAS  Article  Google Scholar 

  58. Nagalakshmi N, Prasad MN (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299. https://doi.org/10.1016/S0168-9452(00)00392-7

    CAS  Article  PubMed  Google Scholar 

  59. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    CAS  Article  Google Scholar 

  60. Nath M, Bhatt D, Prasad R, Tuteja N (2017) Reactive oxygen species (ROS) metabolism and signaling in plant-mycorrhizal association under biotic and abiotic stress conditions. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza—eco-physiology, secondary metabolites, nanomaterials. Springer, Cham, pp 223–232. https://doi.org/10.1007/978-3-319-57849-1-12

    Google Scholar 

  61. Nouairi I, Ammar WB, Youssef NB, Miled DD, Ghorbal MH, Zarrouk M (2009) Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiol Plant 31:237–247. https://doi.org/10.1007/s11738-008-0224-9

    CAS  Article  Google Scholar 

  62. Oser B, Hawks L (1985) Physiological chemistry. McGraw-Hill, New York

    Google Scholar 

  63. Panda P, Nath S, Chanu TT, Sharma GD, Panda SK (2011) Cadmium stress-induced oxidative stress and role of nitric oxide in rice (Oryza sativa L.). Acta Physiol Plant 33:1737–1747. https://doi.org/10.1007/s11738-011-0710-3

    CAS  Article  Google Scholar 

  64. Parmar P, Kumari N, Sharma V (2013) Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot Stud 54:45. https://doi.org/10.1186/1999-3110-54-45

    Article  PubMed  PubMed Central  Google Scholar 

  65. Prodanovic O, Prodanovic R, Pristov JB, Mitrovic A, Radotic K (2016) Effect of cadmium stress on antioxidative enzymes during the germination of Serbian spruce [Picea omorika (Pan.) Purkynĕ]. Afr J Biotechnol 11:11377–11385. https://doi.org/10.5897/AJB11.4114

    CAS  Article  Google Scholar 

  66. Samma MK, Zhou H, Cui W, Zhu K, Zhang J, Shen W (2017) Methane alleviates copper-induced seed germination inhibition and oxidative stress in Medicago sativa. Biometals 30:97–111. https://doi.org/10.1007/s10534-017-9989-x

    CAS  Article  PubMed  Google Scholar 

  67. Seneviratne M, Rajakaruna N, Rizwan M, Madawala HM, Ok YS, Vithanage M (2017) Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. Environ Geochem Health 12:1–9. https://doi.org/10.1007/s106653-017-0005-8

    Article  Google Scholar 

  68. Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    CAS  Article  Google Scholar 

  69. Shanmugaraj BM, Chandra HM, Srinivasan B, Ramalingam S (2013) Cadmium induced physio-biochemical and molecular response in Brassica juncea. Int J Phytoremediat 15:206–218. https://doi.org/10.1080/15226514.2012.687020

    CAS  Article  Google Scholar 

  70. Shi GR, Cai QS (2008) Photosynthetic and anatomic responses of peanut leaves to cadmium stress. Photosynthetica 46:627–630

    CAS  Article  Google Scholar 

  71. Singh AS, Lal EP (2018) Effect of Different Cadmium Concentrations on Seed Germination of Ocimum basilicum L. (Sweet Basil). Int J Sci Res Sci Technol 5:51–54

    CAS  Google Scholar 

  72. Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis (2-nitrobenzoic acid). Anal Biochem 175:408–413. https://doi.org/10.1016/0003-2697(88)90564-7

    CAS  Article  PubMed  Google Scholar 

  73. Srivastava RK, Pandey P, Rajpoot R, Rani A, Dubey RS (2014) Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma 251:1047–1065. https://doi.org/10.1007/s00709-014-0614-3

    CAS  Article  PubMed  Google Scholar 

  74. Sun RL, Zhou QX, Sun FH, Jin CX (2007) Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ Exp Bot 60:468–476. https://doi.org/10.1016/j.envexpbot.2007.01.004

    CAS  Article  Google Scholar 

  75. Vestena S, Cambraia J, Ribeiro C, Oliveira JA, Oliva MA (2011) Cadmium-induced oxidative stress and antioxidative enzyme response in water hyacinth and salvinia. Braz J Plant Physiol 23(2):131–139. https://doi.org/10.1590/S1677-04202011000200005

    CAS  Article  Google Scholar 

  76. Wang Z, Zhang Y, Huang Z, Huang L (2008) Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant Soil 310:137. https://doi.org/10.1007/s11104-008-9641-1

    CAS  Article  Google Scholar 

  77. Williams M, Sanchez JJ, Harwood JL (2000) Lipoxygenase pathway in olive callus cultures (Olea europaea). Phytochem 53:13–19. https://doi.org/10.1016/S0031-9422(99)00468-9

    CAS  Article  Google Scholar 

  78. Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208. https://doi.org/10.1104/pp.125.1.199

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Yılmaz DD, Parlak KU (2011) Changes in proline accumulation and antioxidative enzyme activities in Groenlandia densa under cadmium stress. Ecol Indic 11:417–423. https://doi.org/10.1016/j.ecolind.2010.06.012

    CAS  Article  Google Scholar 

  80. Zayneb C, Bassem K, Zeineb K, Grubb CD, Noureddine D, Hafedh M, Amine E (2015) Physiological responses of fenugreek seedlings and plants treated with cadmium. Environ Sci Pollut Res 22:10679–10689. https://doi.org/10.1007/s113564270-8

    CAS  Article  Google Scholar 

  81. Zhang M, Deng X, Yin L, Qi L, Wang X, Wang S, Li H (2016) Regulation of galactolipid biosynthesis by overexpression of the rice MGD gene contributes to enhanced aluminum tolerance in tobacco. Front in Plant Sci 30(7):337. https://doi.org/10.3389/fpls.2016.00337

    CAS  Article  Google Scholar 

  82. Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509. https://doi.org/10.1016/j.chemosphere.2007.08.028

    CAS  Article  PubMed  Google Scholar 

  83. Zoufan P, Jalali R, Hassibi P, Neisi E, Rastegarzadeh S (2018) Evaluation of antioxidant bioindicators and growth responses in Malva parviflora L. exposed to cadmium. Physiol Mol Biol Plants 24:1005–1016. https://doi.org/10.1007/s12298-018-0596-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

BC is grateful to University Grant Commission (UGC) for providing UGC non-NET fellowship (Award no: Ph.D./2126/2012). The help of Dr. Raj Kumar Chauhan, Indian Agricultural Research Institute (IARI) Regional station, Karnal, India in providing us with Indian brown mustard seeds is highly acknowledged. The authors are also grateful to SAIC, Tezpur University, India for providing us with Atomic Absorption spectrophotometer (AAS) facility.

Author information

Affiliations

Authors

Contributions

BC, BS, and SKP designed experiment. BC and PB performed the experiments. BC wrote manuscript. PB, BS, and JPA analyzed the data and edited manuscript.

Corresponding author

Correspondence to Sanjib Kumar Panda.

Ethics declarations

Conflict of interest

No conflict among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by P. Wojtaszek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chowardhara, B., Borgohain, P., Saha, B. et al. Differential oxidative stress responses in Brassica juncea (L.) Czern and Coss cultivars induced by cadmium at germination and early seedling stage. Acta Physiol Plant 42, 105 (2020). https://doi.org/10.1007/s11738-020-03094-0

Download citation

Keywords

  • Cd stress
  • Germination
  • Early seeding growth
  • Antioxidant enzymes
  • Non-enzymatic