Skip to main content
Log in

Dehydration-induced changes in spectral reflectance indices and chlorophyll fluorescence of Antarctic lichens with different thallus color, and intrathalline photobiont

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In this study, we investigated responses of the Photochemical Reflectance Index (PRI), and Normalized Difference Vegetation Index (NDVI) to gradual dehydration of several Antarctic lichen species (chlorolichens: Xanthoria elegans, Rhizoplaca melanophthalma, Physconia muscigena, cyanolichen: Leptogium puberulum), and a Nostoc commune colony from fully wet to a dry state. The gradual loss of physiological activity during dehydration was evaluated by chlorophyll fluorescence parameters. The experimental lichen species differed in thallus color, and intrathalline photobiont. In the species that did not exhibit color change with desiccation (X. elegans), NDVI and PRI were more or less constant (mean of 0.25, − 0.36, respectively) throughout a wide range of thallus hydration status showing a linear relation to relative water content (RWC). In contrast, the species with apparent species-specific color change during dehydration exhibited a curvilinear relation of NDVI and PRI to RWC. PRI decreased (R. melanophthalma, L. puberulum), increased (N. commune) or showed a polyphasic response (P. muscigena) with desiccation. Except for X. elegans, a curvilinear relation was found between the NDVI response to RWC in all species indicating the potential of combined ground research and remote sensing spectral data analyses in polar regions dominated by lichen flora. The chlorophyll fluorescence data recorded during dehydration (RWC decreased from 100 to 0%) revealed a polyphasic species-specific response of variable fluorescence measured at steady state—Fs, effective quantum yield of photosystem II (ΦPSII), and non-photochemical quenching (qN). Full hydration caused an inhibition of ΦPSII in N. commune while other species remained unaffected. The dehydration-dependent fall in ΦPSII was species-specific, starting at an RWC range of 22–32%. Critical RWC for ΦPSII was around 5–10%. Desiccation led to a species-specific polyphasic decrease in Fs and an increase in qN indicating the involvement of protective mechanisms in the chloroplastic apparatus of lichen photobionts and N. commune cells. In this study, the spectral reflectance and chlorophyll fluorescence data are discussed in relation to the potential of ecophysiological processes in Antarctic lichens, their resistance to desiccation and survival in Antarctic vegetation oases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arima H, Horiguchi N, Takaichi S, Kofuji R, Ishida K-I, Wada K, Sakamoto T (2012) Molecular genetic and chemotaxonomic characterization of the terrestrial cyanobacterium Nostoc commune and its neighboring species. FEMS Microbiol Ecol 79:34–45

    Article  CAS  PubMed  Google Scholar 

  • Aubert S, Juge C, Boisson AM, Gout E, Bligny R (2007) Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. Planta 226:1287–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balzarolo M, Vescovo L, Hammerle A, Gianelle D, Papale D, Tomelleri E, Wohlfahrt G (2015) On the relationship between ecosystem-scale hyperspectral reflectance and CO2 exchange in European mountain grasslands. Biogeosciences 12:3089–3108

    Article  Google Scholar 

  • Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ Exp Bot 32:85–100

    Article  CAS  Google Scholar 

  • Barták M (2014) Lichen photosynthesis. Scaling from the cellular to the organism level. In: Hohmann-Marriot MF (ed) The structural basis of biological energy generation. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 379–400

    Chapter  Google Scholar 

  • Barták M, Váczi P (2014) Long-term fluorometric measurements of photosynthetic processes in Antarctic moss Bryum sp. during austral summer season. Czech Polar Rep 4:63–72

    Article  Google Scholar 

  • Barták M, Hájek J, Vráblíková H, Dubová J (2004) High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione. Plant Biol 6:333–341

    Article  CAS  PubMed  Google Scholar 

  • Barták M, Váczi P, Hájek J, Smykla J (2007) Low temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria elegans. Polar Biol 31:47–51

    Article  Google Scholar 

  • Barták M, Trnková K, Hansen ES, Hazdrová J, Skácelová K, Hájek J, Forbelská M (2015a) Effect of dehydration on spectral reflectance and photosynthetic efficiency in Umbilicaria arctica and U. hyperborea. Biol Plant 59:357–365

    Article  CAS  Google Scholar 

  • Barták M, Hazdrová J, Jáchymová G, Pláteníková E, Monteiro Estevao DM, Hájek J, Skácelová K, Váczi P, Balarinová K (2015b) Photosynthetic parameters and synthesis of UV-B absorbing compounds is species-specific in Antarctic lichens exposed to supplemental UV-B radiation. In: 14. ČSEBR conference, Brno, Czech Republic, 2015. Bulletin ČSEBR, p 69. ISSN 1213-6670

  • Barták M, Hazdrová J, Skácelová K, Hájek J (2016) Dehydration-induced responses of primary photosynthetic processes and spectral reflectance indices in Antarctic Nostoc sp. Czech Polar Rep 6:87–95

    Article  Google Scholar 

  • Bechtel R, Rivard R, Sanchez-Azofeifa A (2002) Spectral properties of foliose and crustose lichens based on laboratory experiments. Remote Sens Environ 82:389–396

    Article  Google Scholar 

  • Block W, Lewis Smith RI, Kennedy AD (2009) Strategies of survival and resource exploitation in the Antarctic fellfield ekosystem. Biol Rev 84:449–484

    Article  CAS  PubMed  Google Scholar 

  • Broady PA (1996) Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers Conserv 5:1307–1335

    Article  Google Scholar 

  • Büdel B, Lange OL (1994) The role of cortical and epinecral layers in the lichen genus Peltula. Cryptogam Bot 4:262–269

    Google Scholar 

  • Calviño-Cancela M, Martín-Herrero J (2016) Spectral discrimination of vegetation classes in ice-free areas of Antarctica. Remote Sens 8:856

    Article  Google Scholar 

  • Cansaran D, Cetin D, Halici MG, Atakol O (2006) Determination of usnic acid in some Rhizoplaca species from Middle Anatolia and their antimicrobial activities. Z Naturforsch C 61:47–51

    Article  CAS  PubMed  Google Scholar 

  • Casanovas P, Black M, Fretwell P, Convey P (2015) Mapping lichen distribution on the Antarctic Peninsula using remote sensing, lichen spectra and photographic documentation by citizen scientists. Polar Res 34:25633

    Article  CAS  Google Scholar 

  • Chen J-C, Chen C-T (2008) Correlation analysis between indices of tree leaf spectral reflectance and chlorophyll content. In: Proceedings. The international archives of the photogrammetry, remote sensing and spatial information sciences. Part B7. Beijing, vol XXXVII, pp 231–238

  • Daughtry CST, Walthall CL, Kim MS, Brown de Colstoun E, McMurtrey JE III (2000) Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ 74:229–239

    Article  Google Scholar 

  • Ehling-Schulz M, Scherer S (1999) UV protection in cyanobacteria. Eur J Phycol 34:329–338

    Article  Google Scholar 

  • Fabião M, Ferreira MI, Conceição N, Silvestre J (2012) Transpiration and water stress effects on water use, in relation to estimations from NDVI: application in a vineyard in SE Portugal. In: Erena M, López-Francos A, Montesinos S, Berthoumieu J-P (eds) The use of remote sensing and geographic information systems for irrigation management in southwest Europe, Zaragoza, pp 203–208

  • Feng J, Rivard B, Rogge D, Sánchez-Azofeifa A (2013) The longwave infrared (3–14 µm) spectral properties of rock encrusting lichens based on laboratory spectra and airborne SEBASS imagery. Remote Sens Environ 131:173–181

    Article  Google Scholar 

  • Fernández-Marín B, Becerril JM, García-Plazaolaeri JI (2010) Unravelling the roles of desiccation-induced xanthophyll cycle activity in darkness: a case study in Lobaria pulmonaria. Planta 231:1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Fréchette E, Wong CYS, Junker LV, Chang Ch-Y, Ensminger I (2015) Zeaxanthin-independent energy quenching and alternative electron sinks cause a decoupling of the relationship between the Photochemical Reflectance Index (PRI) and photosynthesis in an evergreen conifer during spring. J Exp Bot 66:7309–7323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fretwell PT, Convey P, Fleming AH, Peat HJ, Hughes KA (2011) Detecting and mapping vegetation distribution on the Antarctic Peninsula from remote sensing data. Polar Biol 34:273–281

    Article  Google Scholar 

  • Gamon JA, Berry JA (2013) Facultative and constitutive pigment effects on the Photochemical Reflectance Index (PRI) in sun and shade conifer needles. Isr J Plant Sci 60:85–95

    Article  Google Scholar 

  • Gamon JA, Surfus JS (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytol 143:105–117

    Article  CAS  Google Scholar 

  • Gamon JA, Field CB, Bilger W, Björkman O, Fredeen A, Peñuelas J (1990) Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85:1–7

    Article  CAS  PubMed  Google Scholar 

  • Garbulsky MF, Penuelas J, Gamon J, Inoue Y, Filella I (2011) The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: a review and meta-analysis. Remote Sens Environ 115:281–297

    Article  Google Scholar 

  • Garty J, Weissman L, Tamir O, Beer S, Cohen Y, Karnieli A, Orlovsky L (2000) Comparison of five physiological parameters to assess the vitality of the lichen Ramalina lacera exposed to air pollution. Physiol Plant 109:410–418

    Article  CAS  Google Scholar 

  • Gates DM, Keegan HJ, Schleter JC, Weidner VR (1965) Spectral properties of plants. Appl Opt 4:11–20

    Article  Google Scholar 

  • Gauslaa Y, McEvoy M (2005) Seasonal changes in solar radiation drive acclimation of the sun-screening compound parietin in the lichen Xanthoria parietina. Basic Appl Ecol 27:75–82

    Article  CAS  Google Scholar 

  • Gauslaa Y, Solhaug K-A (2001) Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia 126:462–471

    Article  PubMed  Google Scholar 

  • Gauslaa Y, Ustvedt EM (2003) Is parietin a UV-B or a blue-light screening pigment in the lichen Xanthoria parietina? Photochem Photobiol Sci 2:424–432

    Article  CAS  Google Scholar 

  • Gloser J, Gloser V (2007) Changes in spectral reflectance of a foliar lichen Umbilicaria hirsuta during desiccation. Biol Plant 51:395–398

    Article  Google Scholar 

  • Guo JM, Trotter CM (2004) Estimating photosynthetic light-use efficiency using the photochemical reflectance index: variations among species. Funct Plant Biol 31:255–265

    Article  CAS  Google Scholar 

  • Gupta RK (2011) Freeze recovery and nitrogenase activity in Antarctic cyanobacterium Nostoc commune. In: International conference on nanotechnology and biosensors IPCBEE, vol 25. IACSIT Press, Singapore, pp 116–124

  • Haboudane D, John R, Millera JR, Tremblay N, ZarcoTejada PJ, Dextraze L (2002) Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens Environ 81:416–426

    Article  Google Scholar 

  • Haranczyk H, Bacior M, Jastrzebska P, Olech MA (2006) Deep dehydration of Antarctic lichen Leptogium puberulum Hue observed by NMR and sorption isotherm. Acta Phys Pol A 115:516–520

    Article  Google Scholar 

  • Harsanyi JC, Chang Ch-I (1994) Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Trans Geosci Remote Sens 32:779–785

    Article  Google Scholar 

  • Haselwimmer C, Fretwell P (2009) Field reflectance spectroscopy of sparse vegetation cover on the Antarctic peninsula. In: First workshop on hyperspectral image and signal processing: evolution in remote sensing. Grenoble, France. https://doi.org/10.1109/WHISPERS.2009.5289099

  • Hauck M, Willenbruch K, Leuschner Ch (2009) Lichen substances prevent lichens from nutrient deficiency. J Chem Ecol 35(1):71–73

    Article  CAS  PubMed  Google Scholar 

  • Heber U (2008) Photoprotection of green plants: a mechanism of ultra-fast thermal energy dissipation in desiccated lichens. Planta 228:641–650

    Article  CAS  PubMed  Google Scholar 

  • Heber U (2012) Conservation and dissipation of light energy in desiccation-tolerant photoautotrophs, two sides of the same coin. Photosynth Res 113:5–13

    Article  CAS  PubMed  Google Scholar 

  • Heber U, Bilger W, Türk R, Lange OL (2010) Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thalli of the lichen Lobaria pulmonaria. New Phytol 185:459–470

    Article  CAS  PubMed  Google Scholar 

  • Honegger R (1990) Mycobiont–photobiont interactions in adult thalli and in axenically resynthesized pre-thallus stages of Xanthoria parietina (Teloschistales, lichenized Ascomycetes). Bibl Lichenol 38:191–208

    Google Scholar 

  • Huang Y-T, Onose Y-I, Abe N, Yoshikawa K (2009) In vitro inhibitory effects of pulvinic acid derivates isolated from Chinese edible mushrooms, Boletus calopus and Suillus bovinus, on cytochrome P450 activity. Biosci Biotechnol Biochem 73:855–860

    Article  CAS  PubMed  Google Scholar 

  • Huneck S, Yoshimura I (1996) Idetification of lichen substances. Springer, Berlin

    Book  Google Scholar 

  • Jiang Y, Carrow RN, Duncan RR (2005) Physiological acclimation of seashore paspalum and bermudagrass to low light. Sci Hort 105:101–115

    Article  Google Scholar 

  • Jupa R, Hájek J, Hazdrová J, Barták M (2012) Interspecific differences in photosynthetic efficiency and spectral reflectance in two Umbilicaria species from Svalbard during controlled desiccation. Czech Polar Rep 2:31–41

    Article  Google Scholar 

  • Kiang NY, Siefert J, Govindjee, Blankenship RE (2007) Spectral signatures of photosynthesis. I. Rev Earth Org Astrobiol 7:222–251

    Article  CAS  Google Scholar 

  • Komárek J, Genuario DB, Fiore MF, Elster J (2015) Heterocytous cyanobacteria of the Ulu Peninsula, James Ross Island, Antarctica. Polar Biol 38:475–492

    Article  Google Scholar 

  • Komura M, Yamagishi A, Shibata Y, Iwasaki I, Itoh S (2010) Mechanism of strong quenching of photosystem II chlorophyll fluorescence under drought stress in a lichen, Physciella melanchla, studied by subpicosecond fluorescence spectroscopy. Biochim Biophys Acta 1797:331–338

    Article  CAS  PubMed  Google Scholar 

  • Kosugi M, Maiko Arita M, Shizuma R, Moriyama Y, Kashino Y, Koike H, Satoh K (2009) Responses to desiccation stress in lichens are different from those in their photobionts. Plant Cell Physiol 50:879–888

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Zorn M, Turk B, Wornik S, Beckett RP, Batič F (2003) Biochemical traits of lichens differing in relative desiccation tolerance. New Phytol 160:167–176

    Article  CAS  Google Scholar 

  • Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. PNAS 102:3141–3146

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Dhar P, Tayade AB, Gupta D, Chaurasia OP, Upreti DK, Arora R, Srivastava RB (2014) Antioxidant capacities, phenolic profile and cytotoxic effects of saxicolous lichens from trans-Himalayan cold desert of Ladakh. PLoS One 9:e98696. https://doi.org/10.1371/journal.pone.0098696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutser T, Metsamaa L, Strombeck N, Vahtmae E (2006) Monitoring cyanobacterial blooms by satellite remote sensing. Estuar Coast Shelf Sci 67:303–312

    Article  Google Scholar 

  • Lange OL, Bilger W, Rimke S, Schreiber U (1989) Chlorophyll fluorescence of lichens containing green and blue- green algae during hydration by water vapor uptake and by addition of liquid water. Bot Acta 102:306–313

    Article  Google Scholar 

  • Láska K, Barták M, Hájek J, Prošek P, Bohuslavová O (2011) Climatic and ecological characteristics of deglaciated area of James Ross Island, Antarctica, with a special respect to vegetation cover. Czech Polar Rep 1:49–62

    Article  Google Scholar 

  • Letts MG, Phelan CA, Johnson DRE, Rodd SB (2008) Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cotton woods in a riparian woodland. Tree Physiol 28:1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Meroni M, Picchi V, Rossini M, Cogliati S, Panigada C, Nali C, Lorenzini G, Colombo R (2008) Leaf level early assessment of ozone injuries by passive fluorescence and photochemical reflectance index. Int J Remote Sens 29:5409–5422

    Article  Google Scholar 

  • Monteiro Estêvāo DM (2015) Production of UV-B screens and changes in photosynthetic efficiency in Antarctic Nostoc commune colonies and a lichen Xanthoria elegans depend on a dose and duration of UV-B stress. Czech Polar Rep 5:55–68

    Article  Google Scholar 

  • Morison M, Cloutis E, Mann P (2014) Spectral unmixing of multiple lichen species and underlying substrate. Int J Remote Sens 35:478–492

    Article  Google Scholar 

  • Munzi S, Branquinho Ch, Cruz C, Loppi S (2012) Nitrogen tolerance in the lichen Xanthoria parietina: the sensitive side of a resistant species. Funct Plant Biol 40:237–243

    Article  CAS  Google Scholar 

  • Nakaji T, Kosugi Y, Takanashi S, Niiyama K, Noguchi S, Tani M, Oguma H, Nik AR, Kassim AR (2014) Estimation of light-use efficiency through a combinational use of the photochemical reflectance index and vapor pressure deficit in an evergreen tropical rainforest at Pasoh, Peninsular Malaysia. Remote Sens Environ 150:82–92

    Article  Google Scholar 

  • Naumann JC, Anderson JE, Young DR (2008) Linking physiological responses, chlorophyll fluorescence and hyperspectral imagery to detect salinity stress using the physiological reflectance index in the coastal shrub, Myrica cerifera. Remote Sens Environ 112:3865–3875

    Article  Google Scholar 

  • Nayaka S, Saxena P (2014) Physiological responses and ecological success of lichen Stereocaulon foliolosum and moss Racomitrium subsecundum growing in same habitat in Himalaya. Indian J Fundam Appl Life Sci 4:167–179

    Google Scholar 

  • Nelson PR, Roland C, Macander MJ, McCune B (2013) Detecting continuous lichen abundance for mapping winter caribou forage at landscape spatial scales. Remote Sens Environ 137:43–54

    Article  Google Scholar 

  • Novis PM, Whitehead D, Gregorich ED, Hunt JE, Sparrow AD, Hopkins DW, Elberling BO, Greenfield LG (2007) Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven by temperature regime. Glob Change Biol 13:1224–1237

    Article  Google Scholar 

  • Orekhova A, Marečková M, Hazdrová J, Barták M (2018) The effect of upper cortex on spectral reflectance indices in Antarctic lichens during thallus dehydration. Czech Polar Rep 8(1) (accepted, in press)

  • Øvstedal DO, Lewis Smith RI (2001) Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Series: studies in polar research. Cambridge University Press, Cambridge

    Google Scholar 

  • Palumbo AD, Campi P, Modugno F, Mastrorilli M (2008) Crop water status estimated by remote sensing in formation. In: Santini A, Lamaddalena N, Severino G, Palladino M (eds) Irrigation in Mediterranean agriculture: challenges and innovation for the next decades. CIHEAM, Bari, pp 69–75, (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 84)

    Google Scholar 

  • Penuelas J, Baret F, Filella I (1995) Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31:221–230

    CAS  Google Scholar 

  • Perez-Priego O, Guan J, Rossini M, Fava F, Wutzler T, Moreno G, Carvalhais N, Carrara A, Kolle O, Julitta T, Schrumpf M, Reichstein M, Migliavacca M (2015) Sun-induced chlorophyll fluorescence and photochemical reflectance index improve remote-sensing gross primary production estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem. Biogeosciences 12:6351–6367

    Article  CAS  Google Scholar 

  • Piovano M, Guzmán G, Garbarino JA, Chamy MC (1997) Rhizoplaca melanophthalma a new chemical race. Biochem Syst Ecol 25:359–360

    Article  CAS  Google Scholar 

  • Rees WG, Tutubalina OV, Golubeva EI (2004) Reflectance spectra of subarctic lichens between 400 and 2400 nm. Remote Sens Environ 90:281–292

    Article  Google Scholar 

  • Ripullone F, Rivelli AR, Baraldi R, Guarini R, Guerrieri R, Magnani F, Peñuelas J, Raddi S, Borghetti M (2011) Effectiveness of the photochemical reflectance index to track photosynthetic activity over a range of forest tree species and plant water statuses. Funct Plant Biol 38:177–186

    Article  CAS  Google Scholar 

  • Rodriguez-Caballero E, Knerr T, Büdel B, Hill J, Weber B (2016) Cryptogamic covers control spectral vegetation indices and their seasonal variation in dryland systems. Geophys Res Abstr 18:13347 (EGU2016-9712)

    Google Scholar 

  • Sand-Jensen K (2014) Ecophysiology of gelatinous Nostoc colonies: unprecedented slow growth and survival in resource-poor and harsh environments. Ann Bot 114:17–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sand-Jensen K, Jespersen TS (2012) Tolerance of the widespread cyanobacterium Nostoc commune to extreme temperature variations (− 269 to 105 °C), pH and salt stress. Oecologia 169:331–339

    Article  PubMed  Google Scholar 

  • Schlensog M, Schroeter B, Sancho LG, Pintado A, Kappen L (1997) Effects of strong irradiance to the photosynthetic performance of the melt water dependent cyanobacterial lichen Leptogium puberulum (Collemaceae) Hue from the maritime. Antarct Bibl Lichenol 67:235–247

    Google Scholar 

  • Shukia SP, Singh JS, Kashyap S, Giri DD, Kashyap AK (2008) Antarctic cyanobacteria as a source of phycocyanine. Indian J Mar Sci 37:446–449

    CAS  Google Scholar 

  • Singh R, Ranjan S, Nayaka S, Pathre UV, Shirke PA (2013) Functional characteristics of a fruticose type of lichen, Stereocaulon foliolosum Nyl. in response to light and water stress. Acta Physiol Plant 35:1605–1615

    Article  CAS  Google Scholar 

  • Slavov C, Reus M, Holzwarth AR (2013) Two different mechanisms cooperate in the desiccation-induced excited state quenching In Parmelia Lichen. J Phys Chem B 117:11326–11336

    Article  CAS  PubMed  Google Scholar 

  • Smith RCG, Adams J, Stephens DJ, Hick PT (1995) Forecasting wheat yield in a Mediterranean-type environment from the NOAA satellite. Aust J Agric Res 46:113–125

    Article  Google Scholar 

  • Stagakis S, Markos N, Sykioti O, Kyparissis A (2014) Tracking seasonal changes of leaf and canopy light use efficiency in a Phlomis fruticosa Mediterranean ecosystem using field measurements and multi-angular satellite hyperspectral imagery. ISPRS J Photogramm Remote Sens 97:138–151

    Article  Google Scholar 

  • Sun P, Wahbi S, Tsonev T, Haworth M, Liu S, Centritto M (2014) On the use of leaf spectral indices to Assess water status and photosynthetic limitations in Olea europaea L. during water-stress and recovery. PLoS One 9:e105165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takaichi S, Maoka T, Mochimaru M (2009) Unique carotenoids in the terrestrial cyanobacterium Nostoc commune NIES-24: 2-hydroxymyxol 2′-fucoside, nostoxanthin and canthaxanthin. Curr Microbiol 59:413–419

    Article  CAS  PubMed  Google Scholar 

  • Trnková K, Barták M (2017) Desiccation-induced changes in photochemical processes of photosynthesis and spectral reflectance in Nostoc commune (Cyanobacteria, Nostocales) colonies from Antarctica. Phycol Res 65:44–50

    Article  CAS  Google Scholar 

  • Trotter GM, Whitehead D, Pinkney EJ (2002) The photochemical reflectance index as a measure of photosynthetic light use efficiency for plants with varying foliar nitrogen contents. Int J Remote Sens 23:1207–1212

    Article  Google Scholar 

  • Tubuxin B, Rahimzadeh-Bajgiran P, Ginnan Y, Hosoi F, Omasa K (2015) Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves. J Exp Bot 66:5595–5603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Veen CJ, Csatho BM (2005) Spectral characteristics of Greenland lichens. Géogr Phys Quat 59:63–73

    Google Scholar 

  • Veerman J, Vasil’ev S, Paton GD, Ramanauskas J, Bruce D (2007) Photoprotection in the lichen Parmelia sulcata: The origins of desiccation-induced fluorescence quenching. Plant Physiol 145:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieners PC, Mudimu O, Bilger W (2012) Desiccation-induced non-radiative dissipation in isolated green lichen algae. Photosynth Res 113:239–247

    Article  CAS  PubMed  Google Scholar 

  • Wong CYS, Gamon JA (2015) Three causes of variation in the photochemical reflectance index (PRI) in evergreen conifers. New Phytol 206:187–195

    Article  CAS  PubMed  Google Scholar 

  • Yamano H, Chen J, Zhang Y, Tamura M (2006) Relating photosynthesis of biological soil crusts with reflectance: preliminary assessment based on a hydration experiment. Int J Remote Sens 27:5393–5399

    Article  Google Scholar 

  • Yamawaka H, Itoh S (2013) Dissipation of excess excitation energy by drought-induced nonphotochemical quenching in two species of drought-tolerant moss: desiccation-induced acceleration of photosystem II fluorescence decay. Biochemistry 52:4451–4459

    Article  CAS  Google Scholar 

  • Yebra M, Dijk AV, Leuning R, Huete A, Guerschman JP (2013) Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance. Remote Sens Environ 129:250–261

    Article  Google Scholar 

  • Zakar T, Laczko-Dobos H, Toth TN, Gombos Z (2016) Carotenoids assist in cyanobacterial photosystem II assembly and function. Front Plant Sci https://doi.org/10.3389/fpls.2016.00295 (article 295)

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Rivard B, Sánchez-Azofeifa A (2005) Spectral unmixing of normalized reflectance data for the deconvolution of lichen and rock mixtures. Remote Sens Environ 95:57–66

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the projects CzechPolar-I, II (LM2010009 and LM2015078) for providing field facilities in Antarctica and the infrastructure for the research reported in this study. The authors thank also for the support from ECOPOLARIS project (CZ.02.1.01/0.0/0.0/16_013/0001708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hájek Josef.

Additional information

Communicated by M. Horbowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miloš, B., Josef, H., Jana, M. et al. Dehydration-induced changes in spectral reflectance indices and chlorophyll fluorescence of Antarctic lichens with different thallus color, and intrathalline photobiont. Acta Physiol Plant 40, 177 (2018). https://doi.org/10.1007/s11738-018-2751-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2751-3

Keywords

Navigation