Advertisement

Modulation of naphthodianthrone biosynthesis in hairy root-derived Hypericum tomentosum regenerants

  • Jana Henzelyová
  • Eva Čellárová
Original Article
  • 130 Downloads

Abstract

The results of the current study represent the first report on an efficient regeneration protocol for Hypericum tomentosum L. hairy root cultures. Six out of ten hairy root clones of H. tomentosum obtained by Agrobacterium rhizogenes-mediated transformation differentiated shoots on Murashige and Skoog medium containing a urea-based cytokinin thidiazuron in combination with the auxin inhibitor p-chlorophenoxyisobutyric acid. The whole plant regeneration of this species in vitro was achieved by further cultivation of shoots on medium containing benzyladenine. All transformed plants were successfully acclimated to ex vitro conditions. Most of the adapted clones exhibited typical hairy root phenotype with stunted growth, small wrinkly leaves and shortened internodes. Increased number of dark nodules, the sites of hypericins accumulation, was observed in the leaves of all transgenic clones. The capability of naphthodianthrone production was also modulated leading to a significant 28- and 5-fold increase of total hypericin content in two transgenic clones. The qPCR analysis revealed seven rolC integrations in two transgenic clones and one integration in four clones. The clones with multiple rolC copies synthesized the highest and the lowest amount of naphthodianthrones, respectively. The chromosome number in all analysed samples was determined as 2n = 18 suggesting a revision of the cytogenetic characterization of H. tomentosum.

Keywords

Hypericin Elicitation Agrobacterium rhizogenes Shoot regeneration Plant growth regulators 

Notes

Acknowledgements

The research was funded by the Slovak Research and Development Agency APVV-14-0154, the Scientific Grant Agency of Slovak Republic VEGA 1/0090/15 and P. J. Šafárik University grant for young researches VVGS-PF-2015-479. The authors would like to thank Dr. Ján Košuth and Dr. Katarína Nigutová for the consultations on evaluation of the qPCR data, Dr. Linda Petijová for the help with statistical analyses and Zdenka Lacková for the preparation of microscope slides. The advice of Dr. Nicolai Nürk, University of Bayreuth, Germany, on taxonomic markers is greatly appreciated.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Baskaran P, Jayabalan N (2009) Psoralen production in hairy roots and adventitious roots cultures of Psoralea corylifolia. Biotechnol Lett 31:1073–1077CrossRefPubMedGoogle Scholar
  2. Bertoli A, Giovannini A, Ruffoni B, Di Guardo A, Spinelli G, Mazzetti M, Pistelli L (2008) Bioactive constituent production in St. John’s Wort in vitro hairy roots regenerated plant lines. J Agric Food Chem 56:5078–5082CrossRefPubMedGoogle Scholar
  3. Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326CrossRefPubMedGoogle Scholar
  4. Briskin DP, Gawienowski MC (2001) Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum. Plant Physiol Biochem 39:1075–1081CrossRefGoogle Scholar
  5. Bruňáková K, Čellárová E (2016) Conservation strategies in the genus Hypericum via cryogenic treatment. Front Plant Sci 7:1–12Google Scholar
  6. Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324CrossRefPubMedGoogle Scholar
  7. Casanova E, Trillas MI, Moysset L, Vainstein A (2005) Influence of rol genes in floriculture. Biotechnol Adv 23:3–39CrossRefPubMedGoogle Scholar
  8. Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1:279–293CrossRefGoogle Scholar
  9. Čellárová E, Kimáková K, Brutovská R (1992) Multiple shoot formation and phenotypic changes of R0 regenerants in Hypericum perforatum L. Acta Biotechnol 12:445–452CrossRefGoogle Scholar
  10. Čellárová E, Kimáková K, Halušková J, Daxnerová Z (1994) The variability of hypericin content in the regenerants of Hypericum perforatum. Acta Biotechnol 14:267–274CrossRefGoogle Scholar
  11. Christey MJ (2001) Use of ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol 37:687–700CrossRefGoogle Scholar
  12. Coste A, Vlase L, Halmagyi A, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tiss Organ Cult 106:279–288CrossRefGoogle Scholar
  13. Couceiro MA, Afreen F, Zobayed SMA, Kozai T (2006) Variation in concentrations of major bioactive compounds of St. John’s wort: effects of harvesting time, temperature and germplasm. Plant Sci 170:128–134CrossRefGoogle Scholar
  14. Crockett SL, Robson NKB (2011) Taxonomy and chemotaxonomy of the genus Hypericum. Med Aromat Plant Sci Biotechnol 5:1–13PubMedPubMedCentralGoogle Scholar
  15. Cui XH, Murthy HN, Wu CH, Paek KY (2010) Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tiss Organ Cult 103:7–14CrossRefGoogle Scholar
  16. Di Guardo A, Čellárová E, Koperdáková J, Pistelli L, Ruffoni B, Allavena A, Giovannini A (2003) Hairy root induction and plant regeneration in Hypericum perforatum L. J Genet Breed 57:269–278Google Scholar
  17. Elmayan T, Vaucheret H (1996) Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant J 9:787–797CrossRefGoogle Scholar
  18. Franklin G, Oliveira M, Dias ACP (2007) Production of transgenic Hypericum perforatum plans via particle bombardment-mediated transformation of novel organogenetic cell suspension cultures. Plant Sci 172:1193–1203CrossRefGoogle Scholar
  19. Franklin G, Conceição LFR, Kombrink E, Dias ACP (2008) Hypericum perforatum plant cells reduce Agrobacterium viability during co-cultivation. Planta 227:1401–1408CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gadzovska S, Maury S, Ounnar S, Righezza M, Kascakova S, Refregiers M, Spasenoski M, Joseph C, Hagège D (2005) Identification and quantification of hypericin and pseudohypericin in different Hypericum perforatum L. in vitro cultures. Plant Physiol Biochem 43:591–601CrossRefPubMedGoogle Scholar
  21. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158CrossRefPubMedGoogle Scholar
  22. Grzegorczyk I, Królicka A, Wysokińska H (2006) Establishment of Salvia officinalis L. hairy root cultures for the production of rosmarinic acid. Z Naturforsch C 61:351–356CrossRefPubMedGoogle Scholar
  23. Hou W, Shakya P, Franklin G (2016) A perspective on Hypericum perforatum transformation. Front Plant Sci 7:879CrossRefPubMedPubMedCentralGoogle Scholar
  24. Huang L, Chen S (2012) Hypericin in Hypericum: chemistry, botanical sources and biological activities. JCPS 21:388–400Google Scholar
  25. Jendželovská Z, Jendželovský R, Kuchárová B, Fedoročko P (2016) Hypericin in the light and in the dark: two sides of the same coin. Front Plant Sci 7:560PubMedPubMedCentralGoogle Scholar
  26. Katekar GF, Geissler AE (1980) Auxin transport inhibitors. Plant Physiol 66:1190–1195CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kim SI, Veena, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–791CrossRefPubMedGoogle Scholar
  28. Komarovská H, Giovannini A, Košuth J, Čellárová E (2009) Agrobacterium rhizogenes-mediated transformation of Hypericum tomentosum L. and Hypericum tetrapterum Fries. Z Naturforsch C 64:864–868CrossRefPubMedGoogle Scholar
  29. Komarovská H, Košuth J, Giovannini A, Smelcerovic A, Zuehlke S, Čellárová E (2010) Effect of the number of rol genes integrations on phenotypic variation in hairy root-derived Hypericum perforatum L. plants. Z Naturforsch C 65:701–712CrossRefPubMedGoogle Scholar
  30. Koperdáková J, Komarovská H, Košuth J, Giovannini A, Čellárová E (2009) Characterization of hairy root-phenotype in transgenic Hypericum perforatum L. clones. Acta Physiol Plant 31:351–358CrossRefGoogle Scholar
  31. Kucharíková A, Kimáková K, Janfelt C, Čellárová E (2016) Interspecific variation in localization of hypericins and phloroglucinols in the genus Hypericum as revealed by desorption electrospray ionization mass spectrometry imaging. Physiol Plant 157:2–12CrossRefPubMedGoogle Scholar
  32. Liu NX, Zhang XQ, Sun JS (2007) Effects of cytokinins and elicitors on the production of hypericins and hyperforin metabolites in Hypericum sampsonii and Hypericum perforatum. Plant Growth Regul 53:207–214CrossRefGoogle Scholar
  33. Mason G, Provero P, Vaira AM, Accotto GP (2002) Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotech 2:20CrossRefGoogle Scholar
  34. Matveeva T, Sokornova S (2016) Agrobacterium rhizogenes-mediated transformation of plants for improvement of yields of secondary metabolites. In: Pavlov A, Bley T (eds) Bioprocessing of plant in vitro systems. Springer International Publishing AG, Switzerland, pp 1–42Google Scholar
  35. Matzk F, Hammer K, Schubert I (2003) Coevolution of apomixis and genome size within the genus Hypericum. Sex Plant Reprod 16:51–58CrossRefGoogle Scholar
  36. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  37. Murch SJ, Choffe KL, Victor JMR, Slimmon TY, KrishnaRaj S, Saxena PK (2000) Thidiazuron-induced plant regeneration from hypocotyl cultures of St. John’s wort (Hypericum perforatum. cv ‘Anthos’). Plant Cell Rep 19:576–581CrossRefGoogle Scholar
  38. Murín A (1960) Substitution of cellophane for glass covers to facilitate preparation of permanent squashes and smears. Stain Technol 35:351–353PubMedGoogle Scholar
  39. Nahrstedt A, Butterweck V (1997) Biologically active and other chemical constituents of the herb Hypericum perforatum L. Pharmacopsychiatry 30:129–134CrossRefPubMedGoogle Scholar
  40. Nielsen N (1924) Chromosome numbers in the genus Hypericum. Hereditas 5:378–382CrossRefGoogle Scholar
  41. Odabas MS, Radusiene J, Camas N, Janulis V, Ivanauskas L, Cirak C (2009) The quantitative effects of temperature and light intensity on hyperforin and hypericins accumulation in Hypericum perforatum L. J Med Plants Res 3:519–525Google Scholar
  42. Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimiya H (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol 133:1135–1147CrossRefPubMedPubMedCentralGoogle Scholar
  43. Öztürk N, Korkmaz S, Öztürk Y (2007) Wound-healing activity of St. John’s Wort (Hypericum perforatum L.) on chicken embryonic fibroblasts. J Ethnopharmacol 111:33–39CrossRefPubMedGoogle Scholar
  44. Pretto FR, Santarem ER (2000) Callus formation and plant regeneration from Hypericum perforatum leaves. Plant Cell Tiss Org 62:107–113CrossRefGoogle Scholar
  45. Robson NKB (1996) Studies in the genus Hypericum L. (Guttiferae) 6. Sections 20. Myriandra to 28. Elodes. Bull Nat Hist Mus Lond (Bot) 26:75–271Google Scholar
  46. Robson NKB (2003) Hypericum botany. In: Ernst E (ed) Hypericum: the genus Hypericum. Taylor and Francis, New York, pp 1–22Google Scholar
  47. Roychowdhury D, Majumder A, Jha S (2013) Agrobacterium rhizogenes-mediated transformation in medicinal plants: prospects and challenges. In: Chandra S, Lata H, Varma A (eds) Biotechnology for medicinal plants. Springer, Berlin, Heidelberg, pp 29–68CrossRefGoogle Scholar
  48. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sharafi A, Sohi HH, Azadi P, Sharafi AA (2014) Hairy root induction and plant regeneration of medicinal plant Dracocephalum kotschyi. Physiol Mol Biol Plants 20:257–262CrossRefPubMedPubMedCentralGoogle Scholar
  50. Spena A, Schmulling T, Koncz C, Schell JS (1987) Independent and synergistic activity of rolA, B and C loci in stimulating abnormal growth in plants. EMBO J 6:3891–3899PubMedPubMedCentralGoogle Scholar
  51. Stojanović G, Ðorđević A, Šmelcerović A (2013) Do other Hypericum species have medical potential as St. John’s Wort (Hypericum perforatum)? Curr Med Chem 20:2273–2295CrossRefPubMedGoogle Scholar
  52. Subotić A, Budimir B, Grubišić D, Momčilović I (2004) Direct regeneration of shoots from hairy root cultures of Centaurium erythraea inoculated with Agrobacterium rhizogenes. Biol Plant 47:617–619CrossRefGoogle Scholar
  53. Subotić A, Jevremović S, Grubišić D (2009) Influence of cytokinins on in vitro morphogenesis in root cultures of Centaurium erythraea—valuable medicinal plant. Sci Hortic-Amsterdam 120:386–390CrossRefGoogle Scholar
  54. Tian L (2015) Using hairy roots for production of valuable plant secondary metabolites. Adv Biochem Eng Biotechnol 149:275–324PubMedGoogle Scholar
  55. Tolonen A, Hohtola A, Jalonen J (2003) Fast high- performance liquid chromatographic analysis of naphthodianthrones and phloroglucinols from Hypericum perforatum extracts. Phytochem Anal 14:306–309CrossRefPubMedGoogle Scholar
  56. Tusevski O, Petreska Stanoeva J, Stefova M, Kungulovski D, Atanasova-Pancevska N, Sekulovski N, Panov S, Gadzovska Simic S (2013) Hairy roots of Hypericum perforatum L.: a promising system for xanthone production. Cent Eur J Biol 8:1010–1022Google Scholar
  57. Tusevski O, Petreska Stanoeva J, Stefova M, Pavokovic D, Gadzovska Simic S (2014) Identification and quantification of phenolic compounds in Hypericum perforatum L. transgenic shoots. Acta Physiol Plant 36:2555–2569CrossRefGoogle Scholar
  58. Tusevski O, Vinterhalter B, Milošević DK, Soković M, Ćirić A, Vinterhalter D, Zdravković Korać S, Petreska Stanoeva J, Stefova M, Gadzovska Simic S (2017) Production of phenolic compounds, antioxidant and antimicrobial activities in hairy root and shoot cultures of Hypericum perforatum L. Plant Cell Tiss Organ Cult 128:589–605CrossRefGoogle Scholar
  59. Velada I, Ragonezi C, Arnholdt-Schmitt B, Cardoso H (2014) Reference genes selection and normalization of oxidative stress responsive genes upon different temperature stress conditions in Hypericum perforatum L. PLoS One 9:e115206CrossRefPubMedPubMedCentralGoogle Scholar
  60. Vinterhalter B, Ninković S, Cingel A, Vinterhalter D (2006) Shoot and root culture of Hypericum perforatum L. transformed with Agrobacterium rhizogenes A4M70GUS. Biol Plant 50:767–770CrossRefGoogle Scholar
  61. Vinterhalter B, Zdravković-Korać S, Mitić N, Bohanec B, Vinterhalter D, Savić J (2015) Effect of sucrose on shoot regeneration in Agrobacterium transformed Hypericum perforatum L. roots. Acta Physiol Plant 37:39–42CrossRefGoogle Scholar
  62. Wölfle U, Seelinger G, Schempp CM (2014) Topical application of St. John’s Wort (Hypericum perforatum). Planta Med 80:109–120CrossRefPubMedGoogle Scholar
  63. Zdravković-Korać S, Ćalić D, Druart PH, Lj Radojević (2003) The horse chestnut lines harboring the rol genes. Biol Plant 47:487–491CrossRefGoogle Scholar
  64. Zdunek K, Alfermann W (1992) Initiation of shoot organ cultures of Hypericum perforatum and formation of hypericin derivatives. Planta Med 58:621–625CrossRefGoogle Scholar
  65. Zobayed SMA, Afreen F, Goto E, Kozai T (2006) Plant–environment interactions: accumulation of hypericins in dark glands of Hypericum perforatum. Ann Bot (Lond) 98:793–804CrossRefGoogle Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2018

Authors and Affiliations

  1. 1.Department of Genetics, Institute of Biology and EcologyFaculty of Science, P. J. Šafárik University in KošiceKošiceSlovakia

Personalised recommendations