Skip to main content
Log in

Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The aim of the present study is to investigate the contribution of mycorrhization to the resilience of olive trees to drought. One-year-old olive plants were inoculated (Myc+) or not (Myc) with arbuscular mycorrhizal fungi (AMF), and subjected to a 40-day-drought period. At regular intervals of the watering-off period and after rehydration period, water relations and gas exchanges parameters were measured. Similarly, the total soluble sugars, proline, and mineral nutrients concentrations were determined. The results revealed that Myc+ plants were less affected by drought than Myc plants proving the involvement of the AMF in the alleviation of drought impact on olive tree. In fact, the turgor potential (Ψp) in Myc+ plants exhibited positive values during the whole treatment period, while Ψp in Myc plants was negative mainly under severe stress intensity. Moreover, the stomatal function of Myc+ plants was less affected by drought compared to Myc plants. The maximum of mycorrhizas relative drought alleviation rate (RDAR) was estimated to be 40% for Ψpd and RWC, 36% for the osmotic potential (ΨS), 86% for Ψp, 16% for gs, and 27% for E. The osmotic adjustment by proline was earlier in Myc+ plants than in Myc ones. The inoculation with AMF also improved mineral uptake (K, N, Zn, and Fe). After 40 days of drought, Myc+ plants survive but not Myc ones. In addition, the restoration of the irrigation permitted the Myc+ plants to recuperate from severe drought stress. To sum up, inoculation of young olive trees with the AMF improved their resilience to drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

RDAR:

Relative drought alleviation rate

\( {\text{DI}}_{{{\text{Myc}}^{ - } }} \) :

Drought impact in non-mycorrhizal plants

\( {\text{DI}}_{{{\text{Myc}}^{ + } }} \) :

Drought impact in mycorrhizal plants

References

  • Abbaspour H, Saeidi-Sar S, Afshari H, Abdel-Wahhab MA (2012) Tolerance of Mycorrhiza infected Pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. J Plant Physiol 169:704–709

    Article  CAS  PubMed  Google Scholar 

  • Abohatem M, Chakrafi F, Jaiti F, Dihazi A, Baaziz M (2011) Arbuscular mycorrhizal fungi limit incidence of Fusarium oxysporum f.sp. albedinis on date palm seedlings by increasing nutrient contents, total phenols and peroxidase activities. Open Hortic J 4:10–16

    Article  CAS  Google Scholar 

  • Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol 149:549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnould P, Hotyat M (2003) Eau et environnement: Tunisie et milieux méditerranéens. ENS ed., Lyon

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Augé RM, Schekel KA, Wample RL (1986) Osmotic adjustment in leaves of VA mycorrhizal and non-mycorrhizal rose plants in response to drought stress. J Plant Physiol 82:765–770

    Article  Google Scholar 

  • Augé RM, Foster JG, Loescher WH, Stodola AW (1992) Symplastic sugar and free amino acid molality of Rosa roots with regard to mycorrhizal colonization and drought. Symbiosis 12:1–17

    Google Scholar 

  • Azcon-Aguilar C, Barea JM (1997) Appling mycorrhiza biotechnology to horticulture: significance and potentials. Sci Hortic 68:1–24

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (2015) Nutrient cycling in the mycorrhizosphere. J Soil Sci Plant Nutr 25(2):372–396

    Google Scholar 

  • Barea JM, Palenzuela J, Cornejo P, Sánchez-Castro I, Navarro-Fernández C, Lopéz-García A, Estrada B, Azcón R, Ferrol N, Azcón-Aguilar C (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301

    Article  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhosale KS, Shinde BP (2011) Influence of arbuscular mycorrhizal fungi on proline and chlorophyll content in Zingiber officinale Rosc grown under water stress. Ind J Fundam Appl Life Sci 1(3):172–176

    Google Scholar 

  • Bompadre MJ, Rios De Molina MC, Colombo RP, Fernandez Bidondo L, Silvani VA, Pardo AG, Ocampo JA, Godeas AM (2013) Differential efficiency of two strains of the arbuscular mycorrhizal fungus Rhizophagus irregularis on olive (Olea europaea) plants under two water regimes. Symbiosis 6:105–112

    Article  Google Scholar 

  • Boomsma CR, Vyn TJ (2008) Maize drought tolerance: potential improvements through arbuscular mycorrhizal symbiosis? Field Crop Res 108:14–31

    Article  Google Scholar 

  • Boudiche S, Bornaz S, Kachouri F (2003) La compétitivité du secteur de l’huile d’olive en Tunisie: prix, qualité et avantage concurrentiel national. Jel Classification F140:Q170

    Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    Article  CAS  PubMed  Google Scholar 

  • Bücking H, Liepold E, Ambilwade P (2012) The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes, Chapter 4. Plant Science, pp 107–138. http://dx.doi.org/10.5772/52570

  • Calvo-Polanco M, Sánchez-Castro I, Cantos M, García JL, Azcón R, Ruiz-Lozano JM, Beuzón CR, Aroca R (2016) Effects of different arbuscular mycorrhizal fungal backgrounds and soils on olive plants growth and water relation properties under well-watered and drought conditions. Plant Cell Environ 39(11):2498–2514

    Article  CAS  PubMed  Google Scholar 

  • Caravaca F, Diaz E, Barea JM, Azcon-Aguilar C, Roldàn A (2003) Photosynthesis and transpiration rates of Olea europaea subsp. sylvestris and Rhamnus lycioides as affected by water deficit and mycorrhiza. Biol Plant 46:637–639

    Article  Google Scholar 

  • Chapman HD, Pratt PF (1961) Methods of analysis for soils, plants and waters. University of California, Riverside, pp 161–174

    Google Scholar 

  • Chartzoulakis KS (2005) Salinity and olive: growth, salt tolerance, photosynthesis and yield. Agric Water Manag 78:108–121

    Article  Google Scholar 

  • Davies FT Jr, Olalde-Portugal V, Aguilera-Gomez L, Alvarado MJ, Ferrera-Cerrato RC, Boutton TW (2002) Alleviation of drought stress of Chile ancho pepper (Capsicum annuum L. cv San luis) with arbuscular mycorrhiza indigenous to Mexico. Sci Hortic 92:347–359

    Article  Google Scholar 

  • Duan X, Neuman DS, Reiber JM, Green CD, Arnold M, Saxton AM, Auge RM (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J Exp Bot 47(303):1541–1550

    Article  CAS  Google Scholar 

  • Ennajeh M, Vadel AM, Khemira H (2009) Osmoregulation and osmoprotection in the leaf cells of two olive cultivars subjected to severe water deficit. Acta Physiol Plant 31:711–721

    Article  CAS  Google Scholar 

  • Garcia K, Zimmermann SD (2014) The role of mycorrhizal associations in plant potassium nutrition. Front Plant Sci 5:337

    Article  PubMed  PubMed Central  Google Scholar 

  • Gianinazzi S, Golotte A, Binet MN, Van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Gutjahr C, Paszkowski U (2013) Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00204

    PubMed  PubMed Central  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Institute SAS (1999) SAS/STAT User’s Guide. SAS Institute, Cary

    Google Scholar 

  • Jackson D, Paglietti L, Ribeiro M, Karray B (2015) Tunisie: Analyse de la filière oléicole. Food and Agriculture Organization of United Nations, FAO Investment Center. Countries Highlights, p 186

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 121:100–105

    Google Scholar 

  • Khalvati M, Bartha B, Dupigny A, Schroder P (2010) Arbuscular mycorrhizal association is beneficial for growth and detoxification of xenobiotics of barley under drought stress. J Soils Sediments 10:54–64

    Article  CAS  Google Scholar 

  • Kjeldhal J (1883) Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z Anal Chem 22:366–382

    Article  Google Scholar 

  • Kramer PJ, Boyer JS (1997) Water relations of plants and soils. Academic Press, San Diego

    Google Scholar 

  • Kramer PJ, Brix H (1965) Measurment of water deficit in plants. UNESCO Arid Zon Res 25:343–531

    Google Scholar 

  • Krishnakumar S, Balakrishnan N, Muthukrishnan R, Kumar SR (2013) Myth and mystery of soil mycorrhiza: a review. Afr J Agric Res 8(38):4706–4717

    Google Scholar 

  • Kubikova E, Moore JL, Ownlew BH, Mullen MD, Augé RM (2001) Mycorrhizal impact on osmotic adjustment in Ocimum basilicum during a lethal drying episode. J Plant Physiol 158:1227–1230

    Article  CAS  Google Scholar 

  • Lehmann A, Rillig MC (2015) Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops—A meta-analysis. Soil Biol Biochem 81:147–158

    Article  CAS  Google Scholar 

  • Lehmann A, Veresoglou SD, Leifheit EF, Rillig MC (2014) Arbuscular mycorrhizal influence on zinc nutrition in crop plants—A meta-analysis. Soil Biol Biochem 69:123–131

    Article  CAS  Google Scholar 

  • Lone R, Shuab R, Wani KA, Ganaie MA, Tiwari AK, Koul KK (2015) Mycorrhizal influence on metabolites, indigestible oligosaccharides, mineral nutrition and phytochemical constituents in onion (Allium cepa L.) plant. Sci Hortic 193:55–61

    Article  CAS  Google Scholar 

  • Lo Gullo MA, Salleo S (1988) Different strategies of drought resistance in three Mediterranean scierophyllous trees growing in the same environmental conditions. New Phytol 108:267–276

    Article  Google Scholar 

  • Lovato PE, Gianinazzi-Pearson V, Trouvelot A, Gianinazzi S (1996) The state of art mycorrhizas and micropropagation. Adv Hort Sci 10:46–52

    Google Scholar 

  • Manuela G, Luciano A (2002) Biotechnology of arbuscular mycorrhizas. Agriculture and food production. Appl Mycol Biotechnol 2:275–310

    Article  Google Scholar 

  • Meddad-Hamza A, Beddiar A, Gollotte A, Lemoine MC, Kuszala C, Gianinazzi S (2010) Arbuscular mycorrhizal fungi improve the growth of olive trees and their resistance to transplantation stress. Afr J Biotechnol 9(8):1159–1167

    Article  Google Scholar 

  • Mena-Violante HG, Ocampo-Jimenez O, Dendooven L, Martinez-Soto G, Gonzalez-Castafieda J, Davies FT Jr, Olalde-Portugal V (2006) Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Mycorrhiza 16:261–267

    Article  PubMed  Google Scholar 

  • Nobel PS (1991) Physicochemical and environmental plant physiology. Academic Press, San Diego

    Google Scholar 

  • Orfanoudakis M, Wheeler CT, Hooker JE (2010) Both the arbuscular mycorrhizal fungus Gigaspora rosea and Frankia increase root system branching and reduce root hair frequency in Alnus glutinosa. Mycorrhiza 20:117–126

    Article  PubMed  Google Scholar 

  • Passioura JB (1996) Drought and drought tolerance. Plant Growth Regul 20:79–83

    Article  CAS  Google Scholar 

  • Philips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Pinior A, Grunewaldt-Stöcker G, Von Alten H, Strasser RJ (2005) Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 15(8):596–605

    Article  CAS  PubMed  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. Mycorrhizal dependency under field conditions. Plant Soil 70:199–309

    Article  CAS  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcon R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistence. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Jung SC, López-Ráez JA, Azcón-Aguilar C (2010) Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: the role of plant defense mechanisms, chapter 9. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function, pp 193–207. https://doi.org/10.1007/978-90-481-9489-6_9

  • Rapparini F, Peñuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth, Chapter 2. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. https://doi.org/10.1007/978-1-4614-9466-9_2

  • Rejsková A, Patková L, Stodůlková E, Lipavska H (2007) The effect of abiotic stresses on carbohydrate status of olive shoots (Olea europaea L.) under in vitro conditions. J Plant Physiol 164(2):174–184

    Article  PubMed  Google Scholar 

  • Robyt JF, White BJ (1987) Biochemical techniques—theory and practice. Books/Cole Publishing Company, Monterey, pp 267–275

    Google Scholar 

  • Rossi L, Sebastiani L, Tognetti R, D’andria R, Morelli G, Cherubini P (2013) Tree-ring wood anatomy and stable isotopes show structural and functional adjustments in olive trees under different water availability. Plant Soil 372:567–579

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (1996) Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants. Agric Ecosyst Environ 60:175–181

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcón R, Gómez M (1995) Effects of arbuscular mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl Environ Microbiol 61:456–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreño AM, Molina M, Andreo-Jiménez B, Porcel R, García-Mina JM, Ruyter-Spira C, López-Ráez JA (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39(2):441–452

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Sánchez M, Aroca R, Muñoz Y, Armada E, Polón R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862–869

    Article  PubMed  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Henningsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK, Singh S, Marathe RA (2002) Organic citrus: soil fertility and plant nutrition. J Sustain Agric 19:5–29

    Article  Google Scholar 

  • Subramanian KS, Charest C (1995) Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza 5:273–278

    Article  Google Scholar 

  • Subramanian KS, Charest C (1999) Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza 9:69–75

    Article  CAS  Google Scholar 

  • Taylor A, Pereira N, Thomas B, Pink DAC, Jones JE, Bending GD (2015) Growth and nutritional responses to arbuscular mycorrhizal fungi are dependent on onion genotype and fungal species. Biol Fertil Soils. https://doi.org/10.1007/s00374-015-1027-y

  • Troll W, Lindsley JA (1955) Photometric method for the determination of proline. J Biol Chem 215:655–660

    CAS  PubMed  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi V (1986) Mesure de taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In physiological and genetic aspects of mycorhizical, V. Gianinazzi-Pearson et S. Gianinazzi. (éd.). INRA, Paris, pp 217–221

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Zou YN, He XH (2011) Differences of hyphal and soil phosphatase activities in drought-stressed mycorrhizal trifoliate orange (Poncirus trifoliata) seedlings. Sci Hortic 129:294–298

    Article  CAS  Google Scholar 

  • Wu QS, Srivastava AK, Zoua YN (2013) AMF-induced tolerance to drought stress in citrus: a review. Sci Hortic 164:77–87

    Article  CAS  Google Scholar 

  • Yooyongwech S, Samphumphuang T, Tisarum R, Theerawitaya C, Cha-um S (2016) Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci Hortic 198:107–117

    Article  CAS  Google Scholar 

  • Zhang L, Jiang C, Zhou J, Declerck S, Tian C, Feng G (2016) Increasing phosphorus concentration in the extraradical hyphae of Rhizophagus irregularis DAOM 197198 leads to a concomitant increase in metal minerals. Mycorrhiza 26(8):909–918

    Article  PubMed  Google Scholar 

  • Zou YN, Srivastava AK, Ni QD, Wu QS (2015) Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange. Front Microbiol 6:203

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Ennajeh.

Additional information

Communicated by M. H. Walter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouledali, S., Ennajeh, M., Zrig, A. et al. Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea). Acta Physiol Plant 40, 81 (2018). https://doi.org/10.1007/s11738-018-2656-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2656-1

Keywords

Navigation