Comparative studies of leaf surface chemical biosynthesis in different tobacco cultivars

  • Mingyue Huang
  • Hongying Zhang
  • Zhaojun Wang
  • Dexin Niu
  • Yanhua Li
  • Hong CuiEmail author
Original Article


To understand the differences in the biosynthesis of leaf surface chemicals and their influence on aphid preference for different tobacco cultivars (Nicotiana tabacum), we analyzed the secretory characteristics of glandular trichomes of four commercial cultivars, K326 (flue-cured), Beinhart 1000-1 (cigar), Basma YNOTBS1 (oriental), and Dabai 1 (burley), and their parental species, Nicotiana sylvestris and Nicotiana tomentosiformis. Trichome-type observation showed that K326 and N. sylvestris have three kinds of glandular trichomes (non-glandular, long stalked glandular, and short stalked glandular trichomes), whereas Beinhart 1000-1, Basma YNOTBS1, Dabai 1, and N. tomentosiformis had two kinds of glandular trichomes (long and short stalked glandular trichomes). The gas chromatography–mass spectrometry profiles of leaf exudates indicated that N. tomentosiformis synthesized only labdanoids; N. sylvestris, K326 and Dabai 1 synthesized only cembranoids; and Beinhart 1000-1 and Basma YNOTBS1 synthesized cembranoids and labdanoids. Gene expression pattern analysis revealed that the labdanoid synthesis-related genes NtABS and NtCPS2 were expressed in N. tomentosiformis, Beinhart 1000-1, and Basma YNOTBS1, whereas the cembranoid synthesis-related genes NtCYC and NtCYP71D16 were expressed in N. sylvestris and all four commercial cultivars. Evolutionary analysis indicated that NtCYC and NtCYP71D16 might be phylogenetically originated from N. sylvestris, whereas NtABS and NtCPS2 expressed in Basma YNOTBS1 and Beinhart 1000-1 might be derived from N. tomentosiformis. In addition, aphid attraction (number of aphids) was significantly and positively correlated with the total glandular secretion (r2 = 0.9425, P ≤ 0.05), and it was significantly and positively correlated with amount of CBT-diol (r2 = 0.9224; P ≤ 0.05). These results provide new insights into the biosynthesis of diterpenoids and biotic stress resistance in tobacco.


Nicotiana tabacum Nicotiana sylvestris Nicotiana tomentosiformis Glandular trichome Diterpenoid Aphid resistance 



This study was supported by the State Tobacco Monopoly Administration of China [Grant No. 110201401003 (JY-03)], and the Technology Center, China Tobacco Henan Industrial Co., Ltd. [Grant No. ZW2014004].

Supplementary material

11738_2018_2642_MOESM1_ESM.docx (1001 kb)
Supplementary material 1 (DOCX 1001 kb)


  1. An L, Zhou Z, Yan A, Gan Y (2011) Progress on trichome development regulated by phytohormone signaling. Plant Signal Behav 6(12):1959–1962. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brückner K, Božić D, Manzano D, Papaefthimiou D, Pateraki I, Scheler U, Ferrer A, de Vos RC, Kanellis AK, Tissier A (2014) Characterization of two genes for the biosynthesis of abietane-type diterpenes in rosemary (Rosmarinus officinalis) glandular trichomes. Phytochemistry 101:52–64. CrossRefPubMedGoogle Scholar
  3. Carman RM, Duffield AR (1993) The biosynthesis of labdanoids. The optical purity of naturally occurring manool and abienol. Aust J Chem 46(7):1105–1114. CrossRefGoogle Scholar
  4. Cui H, Zhang ST, Yang HJ, Ji H, Wang XJ (2011) Gene expression profile analysis of tobacco leaf trichomes. BMC Plant Biol 11(1):76–77. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dayan FE, Duke SO (2003) Trichomes and root hairs: natural pesticide factories. Pestic Outlook 14(4):175–178. CrossRefGoogle Scholar
  6. Ennajdaoui H, Vachon G, Giacalone C, Besse I, Sallaud C, Herzog M, Tissier A (2010) Trichome specific expression of the tobacco (Nicotiana sylvestris) cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions. Plant Mol Biol 73(6):673–685. CrossRefPubMedGoogle Scholar
  7. Fahn A (2000) Structure and function of secretory cells. Adv Bot Res 31:37–75. CrossRefGoogle Scholar
  8. Glas JJ, Schimmel BCJ, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR (2012) Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci 13(12):17077–17103. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Guo Z, Wagner GJ (1995) Biosynthesis of cembratrienols in cell-free extracts from trichomes of Nicotiana tabacum. Plant Sci 110(1):1–10. CrossRefGoogle Scholar
  10. Han J, Wang G, Yuan T, Liu W, Wang Y (1995) Preliminary study on trichome exudate of leaf surface of flue-cured tobacco. Chin Tob Sci 2:10–13Google Scholar
  11. Johnson AW, Severson RF, Hudson J (1985) Tobacco leaf trichomes and their exudates. Tobacco Control 27:67–72Google Scholar
  12. Kennedy BS, Nielsen MT, Severson RF, Sisson VA, Stephenson MK, Jackson DM (1992) Leaf surface chemicals from Nicotiana affecting germination of Peronospora tabacina (adam) sporangia. J Chem Ecol 18(9):1467–1479. CrossRefPubMedGoogle Scholar
  13. Kennedy BS, Nielsen MT, Severson RF (1995) Biorationals from Nicotiana protect cucumbers against Colletotrichum lagenarium (Pass.) ell. & halst disease development. J Chem Ecol 21(2):221–231. CrossRefPubMedGoogle Scholar
  14. Lange BM, Mahmoud SS, Wildung MR, Turner GW, Davis EM, Lange I, Baker RC, Boydston RA, Croteau RB (2011) Improving peppermint essential oil yield and composition by metabolic engineering. Proc Natl Acad Sci USA 108(41):16944–16949. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Larkin JC, Brown ML, Schiefelbein J (2003) How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis. Annu Rev Plant Biol 54(1):403–430. CrossRefPubMedGoogle Scholar
  16. Leffingwell J (1999) Leaf chemistry—basic chemical constituents of tobacco leaf and differences among tobacco types. Blackwell, London, pp 265–284. Google Scholar
  17. Li H, Chen ZF, Xie ZF, Li GY, Yang XY, Jin DM, Xiang J, Yang WL (2016) Breeding and Application of Dabai 1, a New Burley Tobacco Variety with Good Quality and High Yield. Guizhou Agricu Sci 44(5):1–4. Google Scholar
  18. Liang ZM, Ji H, Zhang H, Weng ML, Cui H (2009) Morphology and structure of chloroplast in flue-cured tobacco trichomes after applying fertilizer. Acta Bot Boreali-Occid Sinica 29(2):291–295Google Scholar
  19. Lin Y, Wagner GJ (1994) Surface disposition and stability of pest-interactive, trichome-exuded diterpenes and sucrose esters of tobacco. J Chem Ecol 20(8):1907–1921. CrossRefPubMedGoogle Scholar
  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25(4):402–408. CrossRefPubMedGoogle Scholar
  21. Luckwill LC (1943) The genus Lycopersicon: a historical, biological and taxonomic survey of the wild and cultivated tomato. Aberd Univ Stud 120:1–44Google Scholar
  22. Mathur J, Chua NH (2000) Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes. Plant Cell 12(4):465–478. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mellon JE, Zelaya CA, Dowd MK, Beltz SB, Klich MA (2012) Inhibitory effects of gossypol, gossypolone, and apogossypolone on a collection of economically important filamentous fungi. J Agric Food Chem 60(10):2740–2745. CrossRefPubMedGoogle Scholar
  24. Meyberg M, Krohn S, Brümmer B, Kristen U (1991) Ultrastructure and secretion of glandular trichomes of tobacco leaves. Flora 185(5):357–363. CrossRefGoogle Scholar
  25. Peng L, Hu ZH (2007) Morphogenesis and histochemical investigation of peltate glandular trichomes on Glycyrrhiza uralensis Fisch. Leaves. J Mol Cell Biol 40(6):395–402Google Scholar
  26. Peng-Fei LI, Zhou JH, Zhang JP, Yang HQ, Xiao ZX (2008) Changes of trichome density and content of leaf surface secretion on different flue-cured tobacco leaves during aging. J Hunan Agric Univ 34(3):293–297Google Scholar
  27. Peters RJ (2010) Two rings in them all: the labdane-related diterpenoids. Nat Prod Rep 27(11):1521–1630. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sallaud C, Giacalone C, Topfer R, Goepfert S, Bakaher N, Rosti S, Tissier A (2012) Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J 72(1):1–17. CrossRefPubMedGoogle Scholar
  29. Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54(4):702–711. CrossRefPubMedGoogle Scholar
  30. Schwab B, Folkers U, Ilgenfritz H, Hülskamp M (2000) Trichome morphogenesis in Arabidopsis. Philos Trans Royal Soc 355(1399):879–883. CrossRefGoogle Scholar
  31. Severson RF, Arrendale RF, Chortyk OT, Johnson AW, Jackson DM, Gwynn GR, Chaplin JF, Stephenson MG (1984) Quantitation of the major cuticular components from green leaf of different tobacco types. J Agric Food Chem 32(3):566–570. CrossRefGoogle Scholar
  32. Shepherd RW, Bass WT, Houtz RL, Wagner GJ (2005) Phylloplanins of tobacco are defensive proteins deployed on aerial surfaces by short glandular trichomes. Plant Cell 17(6):1851–1861. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Shi HZ, Liu GS (1998) Tobacco aromatics. In: Guo K (ed) Variation in aroma content of tobacco, 4th edn. China Agriculture Press, Beijing, pp 81–82Google Scholar
  34. Shi XD, Liu GS, Han JF, Li GC (1999) Effect of various fertilizers on the type and distribution of trichome in fluecurd tobacco. Acta Tabacaria Sinica 5(2):19–22Google Scholar
  35. Simmons AT, Gurr GM (2006) Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agric For Entomol 7(4):265–276. CrossRefGoogle Scholar
  36. Wagner GJ (1991) Secreting glandular trichomes: more than just hairs. Plant Physiol 96(3):675–679. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93(1):3–11. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wahlberg L, Enzell CR (1987) Tobacco isoprenoids. Nat Prod Rep 4:237–276. CrossRefPubMedGoogle Scholar
  39. Wang E, Wagner GJ (2003) Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing. Planta 216(4):686–691. PubMedGoogle Scholar
  40. Wang E, Wang R, Deparasis J, Loughrin JH, Gan S, Wagner GJ (2001) Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat Biotechnol 19(4):371–374. CrossRefPubMedGoogle Scholar
  41. Wang E, Gan S, Wagner GJ (2002) Isolation and characterization of the CYP71D16 trichome-specific promoter from Nicotiana tabacum L. J Exp Bot 53(376):1891–1897. CrossRefPubMedGoogle Scholar
  42. Wang X, Yang Y, Zhang S, Feng Q, Wang J, Dongling WU (2013) Trichome morphology and secreting feature in neutral flavor type flue-cured tobacco leaf. Acta Tabacaria Sinica 3:45–48. Google Scholar
  43. Weathers PJ, Arsenault PR, Covello PS, Mcmickle A, Teoh KH, Reed DW (2011) Artemisinin production in Artemisia annua: studies in planta and results of a novel delivery method for treating malaria and other neglected diseases. Phytochem Rev 10(2):173–183. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Weng ML, Liang ZM, Cui H (2009) Effects of shaded treatment on density of central trichome and content of glandular secretions in tobacco. J Hen Agric Sci 38(4):52–55. Google Scholar
  45. Wilkens RT, Shea GO, Stamp NE (1996) Resource availability and the trichome defenses of tomato plants. Oecologia 106(2):181–191. CrossRefPubMedGoogle Scholar
  46. Yin D, Zhang CD, Du SM, Qu SB, Qiao LZ, Song YC (2008) Breeding and evaluation of new oriental tobacco variety YNOTBS1 and its characteristics. Chin Tob Sci 1:11–15Google Scholar
  47. Yong EC, Lim S, Kim HJ, Han JY, Lee MH, Yang Y, Kim JA, Kim YS (2012) Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes. Plant J 70(3):480–491. CrossRefGoogle Scholar
  48. Zhang H, Cui H, Hao JI, Liang ZM, Weng ML (2012) Effects of drought stress on the development and gene expression of tobacco trichomes. J Zhengzhou Coll Anim Husb Eng 32(1):4–8Google Scholar
  49. Zhang Y, Xu QH, Mao ZC, Pu WD, Li JY, Chen YP (2015) Comparison of density and morphology of glandular trichome of tobacco leaves of four species at different collection periods. J Yunnan Agric Univ 30(1):35–43. Google Scholar

Copyright information

© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2018

Authors and Affiliations

  • Mingyue Huang
    • 1
  • Hongying Zhang
    • 1
  • Zhaojun Wang
    • 1
  • Dexin Niu
    • 1
  • Yanhua Li
    • 1
  • Hong Cui
    • 1
    Email author
  1. 1.Key Laboratory for Tobacco Cultivation of Tobacco Industry, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouChina

Personalised recommendations