Skip to main content

Advertisement

Log in

Polyploidy determines the stage of invasion: clues from Kashmir Himalayan aquatic flora

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Invasive species pose a major threat to native biodiversity and ecosystem integrity in many ecologically sensitive parts of the globe. Many research efforts have so far been made mainly with a focus on morphology, physiology and reproductive biology of invasive species to explain what determines the patterns of invasion. Recently, polyploidy has been reported to significantly influence plant invasiveness. Notwithstanding the profound management and conservation implications, determining the genetic basis of plant invasiveness is a challenging task for ecologists. Variation in ploidy levels of species promises to yield some useful insights in this direction and we, therefore, aimed to test the relation between polyploidy and species invasiveness. We documented chromosome number and ploidy level of 118 alien aquatic plant species including 50 alien non-invasive and 70 alien invasive species, belonging to 64 genera and 39 families distributed across various aquatic habitats of the Kashmir Himalaya at different stages of invasion. Results yielded 47 (39.83%) diploid species, 53 (44.91%) polyploids and the remaining 18 (15.25%) species were reported to have mixed ploidy, i.e., both diploids and polyploids. The invasive plant species exhibited about 40% of intraspecific ploidy polymorphism in contrast to about 28% found in non-invasive plant species. Alien invasive species (at stage IVa, IVb and V senso Colautti and MacIsaac 2004) were found to have more polyploidy (60%) than non-invasive species (at stage II and III) having only 45.23% polyploidy. Our results depict a clear pattern that non-invasive species are disproportionately more diploids with lower ploidy ratios, while invasive plant species on the contrary exhibit higher chromosome counts, thereby being predominantly polyploids. Invasion stage III with 17 diploid species represents by far the highest relative proportion of diploid species, while invasion stage V having 16 polyploid species is highest in terms of polyploid species. Regression analysis based on the stage of invasion and the ploidy status revealed that the relative proportion of polyploids on progressing stage of invasion increases significantly (p < 0.01). These results indicate that polyploidy may be one of the potential determinants of plant invasion. The implications of these results in timely prediction and better management of invasive species are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aiken et al (1978) Counts on Haloragaceae. In: Love A (ed) IOPB chromosome number reports LXII, vol 27. Taxon, pp 519–535

  • Ainouche ML, Jenczewski E (2010) Focus on polyploidy. New Phytol 186:1–4

    Article  PubMed  Google Scholar 

  • Alina B, Krzysztof S, Joanna C, Konrad C, Maria D, Katarzyna B (2007) Isozyme patterns of Callitriche cophocarpa, C. stagnalis and C. Platycarpa from 13 Polish rivers. Biol Lett 44(2):103–114

    Google Scholar 

  • Amsellem L, Chevallier MH, Hossaert-McKey M (2001) Ploidy level of the invasive weed Rubus alceifolius (Rosaceae) in its native range and in areas of introduction. Plant Syst Evol 228:171–179

    Article  Google Scholar 

  • Anna K, Vlasta J (1993) Ecology of two cytotypes of Butomus umbellatus L. Folia Geobot Phytotaxon 28(4):385–411

    Article  Google Scholar 

  • Arohonka T (1982) Chromosome counts of vascular plants of the island Seili in Nauvo, SW Finland. Turum Yeiopistan Biologian-Lattoksen Julk 3:1–2

    Google Scholar 

  • Bao-Hua S, Xue-Jie ZHANG, Fa-Zeng LI, Peng WAN (2002) Chromosome numbers of 14 species in Amaranthus from China. J Syst Evol 40:428–432

    Google Scholar 

  • Beggs JR, Brockerhoff EG, Corley JC, Kenis M, Masciocchi M, Muller F, Rome Q, Villemant C (2011) Ecological effects and management of invasive alien Vespidae. Biocontrol 56:505–526

    Article  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95:45–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms—targets, trends and tomorrow. Ann Bot 107:467–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat S, Maheshwari P, Kumar Sushil, Kumar Anil (2002) Mentha species: in vitro regeneration and genetic transformation. Mol Biol Today 3(1):11–23

    CAS  Google Scholar 

  • Bir SS, Chatha GS, Mandeep Sidhu (1992) Intraspecific variation in Cyperaceae from Punjab Plain, India. Willdenowia 1(2):133–142

    Google Scholar 

  • Bjorkqvist I, Bother BV, Nilsson O, Nordenstar B (1969) Chromosome numbers in Iberian angiosperms. Bot Not 122:271–283

    Google Scholar 

  • Bleeker W, Matthies A (2005) Hybrid zones between invasive Rorippa austriaca and native R. sylvestris (Brassicaceae) in Germany: ploidy levels and patterns of fitness in the field. Heredity 94:664–670

    Article  CAS  PubMed  Google Scholar 

  • Bleeker W, Buchholz A, Erikwelk (2007) Rorippa islandica (Oeder ex Murray) Borbáss. str. In Deutschland. Berichte der Bayerischen Botanischen Gesellschaft 77:145–154

    Google Scholar 

  • Callaway RM, Maron JL (2006) What have exotic plant invasions taught us over the past 20 years? Trends Ecol Evol 21(7):369–374

    Article  PubMed  Google Scholar 

  • Colautti RI, MacIsaac HJ (2004) A neutral terminology to define ‘invasive’ species. Divers Distrib 10:135–141

    Article  Google Scholar 

  • Connor HE, Dawson MI, Keating RD, Gill LS (1998) Chromosome numbers of Phragmites australis (Arundineae: Gramineae) in New Zealand. NZ J Bot 36(465–46):9

    Google Scholar 

  • Cosendai AC, Wagner J, Ladinig U, Rosche C, Hörandl E (2013) Geographical arthenogenesis and population genetic structure in the alpine species Ranunculus kuepferi (Ranunculaceae). Heredity 110:560–569. https://doi.org/10.1038/hdy

    Article  PubMed  PubMed Central  Google Scholar 

  • Crawford Daniel J, Elias Landolt, Les Donald H, Archibald Jenny K, Kimball Rebecca T (2005) Allozyme variation within and divergence between Lemna gibba and L. disperma: systematic and biogeographic implications. Aquat Bot 83:119–128

    Article  CAS  Google Scholar 

  • Crowel DR, Parker WH (1981) Hybridization and Agamospermy of Bidens in Northwestern Ontario. Taxon 30(4):749–760

    Article  Google Scholar 

  • Da Silva CRM et al (2008) Cytogenetical and cytotaxonomical analysis of some Brazalian species of Eleocharis (Cyperaceae). Aust J Bot 56(1):82–90

    Article  Google Scholar 

  • Dawson MI (2008) Index of chromosome numbers of indigenous New Zealand vascular plants. Landecare Res

  • Diao Y, Chen L, Yang G, Zhou M, Song Y, Hu Z, Liu JY (2006) Nuclear DNA C-values in 12 species in Nymphaeales. Caryologia 59(1):25–30

    Article  Google Scholar 

  • Ekrt T, Travniček P, Jarolimova V, Vit P, Urfus T (2009) Genome size and morphology of the Dryopteris affinis group in Central Europe. Preslia 81:261–280

    Google Scholar 

  • Erlandsson S (1946) Chromosome studies of three Alisma species. Svensk Bot Tidskr 40:427

    Google Scholar 

  • Favarger C, Galland N, Kupfer (1979) Recherches cytotaxonmiques sur la flore orophile du maroc. Naturalia Monspel Ser Bot 19:1–64

    Google Scholar 

  • Fernandes A, Leitao MT (1971) Contribution à la connaissance cytotaxinomique des spermatophyte du Portugal, III Carophyllaceae. Bol Soc Brot Ser 2(45):143–176

    Google Scholar 

  • Frisendahl A (1927) Birdie entwicklung Chasmogamer and Kleistogamer BI ten beider Gattung Elatine. Acta Hort. Gothoburg 3:99–142

    Google Scholar 

  • Ganie AH (2010) Studies on Reproductive Biology of some Species of the Genus Potamogeton L. in Relation to their Habitat Characteristics. Unpublished thesis

  • Goldblatt Johnson (1991) Index to plant chromosome numbers 1988–1989. Monographs in Systematic Botany from the Missouri. Bot Garden 40:1–238

    Google Scholar 

  • Gould FW, Soderstrom TR (1967) Chromosome numbers of some Mexican and Colombian grasses. Can J Bot 48(9):1633–1639

    Article  Google Scholar 

  • Hakansson A (1928) Die chromosome einiger Sciropideen. Hereditas 10:277–292

    Article  Google Scholar 

  • Hamal IA, Langer A, Koul AK (1986) Nucleolar organizing region in the Apiaceae (Umbelliferae). Pl Syst Evol 154:11–30

    Article  Google Scholar 

  • Harriman NA (1975) In IOPB chromosome number reports. XLVIII. Taxon 24:367–372

    Google Scholar 

  • Harriman N, Redmond D (1976) Somatic chromosome numbers for some North American species of Juncus l. http://www.jstor.org/publisher/nebc”NewEnglandBotanicalClub,Inc. 78:727–738

  • Heiser Charles B, Whitaker TW (1948) Chromosome numbers polyploidy and growth habit in Californian weeds. Am J Bot 35:179–186

    Article  Google Scholar 

  • Hollingsworth PM, Preston CD, Gornall RJ (1998) Euploid and aneuploid evolution in Potamogeton (Potamogetonaceae): a factual basis for interpretation. Aquat Bot 60:337–358

    Article  Google Scholar 

  • Hull-Sanders HM, Johnson RH, Owen HA, Meyer GA (2009) Effects of polyploidy on secondary chemistry, physiology, and performance of native and invasive genotypes of Solidago gigantea (Asteraceae). Am J Bot 96:762–770

    Article  PubMed  Google Scholar 

  • Hulme PE (2003) Biological invasions: winning the science battles but losing the conservation war? Oryx 37:178–193

    Article  Google Scholar 

  • Jankun A (1989) Further studies in chromosome numbers of polish angiosperms, part XXII. Acta Biol Cracor Ser Bot 31:1–17

    Google Scholar 

  • Janssen T, Bremer K (2004) The age of major monocot groups inferred from 800+ rbcl sequences. Bot J Linnean Soc 146:385–398

    Article  Google Scholar 

  • Johnson PT, Olden JD, Vander Zanden MJ (2008) Dam invaders: impoundments facilitate biological invasions in freshwaters. Front Ecol Environ 6:357–363

    Article  Google Scholar 

  • Kalkman L, Van Wijk RJ (1984) On the variation in chromosome number in Potamogeton pectintus L. Aquat Bot 20:343–349

    Article  Google Scholar 

  • Khuroo AA, Rashid Reshi Z et al (2007) The alien flora of Kashmir Himalaya. Biol Invasions 9:269–292

    Article  Google Scholar 

  • Kliber A, Eckert CG (2005) Intraction between founder effect and selection during biological invasion. Evolution 59(9):1900

    CAS  PubMed  Google Scholar 

  • Klotz S, Kühn I, Durka W (2002) BIOFLOR—a database of biological and ecological characteristics of the flora of Germany. Ser Veg Sci 38:1

    Google Scholar 

  • Kondo Funamoto, Tsuneo Katsuhiko, Motohashi Tsuyoshi (2009) Comparison of karyomorphological characters in four Japanese species of Lycopus and Russian L.europaeus. Chromosom Bot 4:71–77

    Article  Google Scholar 

  • Krasnikov AA, Schaulo DN (1990) Chromosome numbers in representatives of some families of vascular plants in the flora of the Novosibirsk region. II. Bot Žurn Moscow Leningr 75:118–120

    Google Scholar 

  • Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol Syst 38:847–876

    Article  Google Scholar 

  • Kuleszanka J (1934) Rozwój Ziarn Pylku u Potamogeton fluitans. Die Entwickling der pollenteórner bei Potamogeton fluitans. Acta Soc Bot Polon 11(4):457–462

    Article  Google Scholar 

  • Kumar V, Subramaniam B (1986) Chromosome atlas of flowering plants of the Indian subcontinent. Dicotyledones. BSI, Calcutta

    Google Scholar 

  • Kumar S et al (2012) Cytological investigations of some polypetalous plants from the district Sirmaur of Himachal Pradesh in the Western Himalayas, India. Chromosom Bot 7:87–96

    Article  Google Scholar 

  • Lafuma L, Balkwill K, Imbert E, Verlaque R, Maurice S (2003) Ploidy level and origin of the European invasive weed Senecio inaequidens (Asteraceae). Plant Syst Evol 243:59–72

    Article  Google Scholar 

  • Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Article  Google Scholar 

  • Leuven RSEW, Boggero A, Bakker ES, Elgin AK, Verreycken H (2017) Invasive species in inland waters: from early detection to innovative management approaches. Aquat Invasions 12(3):269–273

    Article  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Article  Google Scholar 

  • Liebhold AM, Brockerhoff EG, Martin SK, Nun˜ez A, Wardle DA, Wingfield MJ (2017) Biological invasions in forest ecosystems. Biol Invasions 19:3437–3458

    Article  Google Scholar 

  • Lihova J, Marhold K, Kudoh H, Koch MA (2006) Worldwide phylogeny and biogeography of Cardamine Flexuosa (Brassicaceae) and its relatives. Am J Bot 93(8):1206–1221

    Article  CAS  PubMed  Google Scholar 

  • Lohammar G (1931) The chromosome numbers of Sagittaria natans Pallas and S. Sagittifolia L. Svensk Bot Tidskr 25:32–35

    Google Scholar 

  • Lou Y-B (2004) Cytological studies on some representative species of the tribe Orchideae (Orchidaceae) from China. Bot J Linn Soc 145:231–238

    Article  Google Scholar 

  • Love A (1967) IOPB Chromosome number reports. XIII. vol 16, No. 5. International Association for Plant Taxonomy (IAPT), pp 445–461

  • Love A, Love D (1942) Cyto-taxonomic studies on boreal plants. IKungl Fysiogr Sallska I Lund Forhandl 12:1–19

    Google Scholar 

  • Love A, Love D (1956) Cytotaxonomical conspectus of the icelandic flora. Acta Horti Gothobg 20(4):65–291

    Google Scholar 

  • Love A, Love D (1961) Chromosome number of central and northwest European plant species. Opera Bot 5:1–581

    Google Scholar 

  • Love A, Love D (1975) IOPB. Chromosome number reports, XLIX. Taxon 24:504–507

    Google Scholar 

  • Love A, Love D (1982) IOPB. Chromosome number reports. LXXVII. Taxon 31:766–768

    Google Scholar 

  • Lowry E, Lester SE (2006) The biogeography of plant reproduction: potential determinants of species’ range sizes. J Biogeogr 33:1975–1982

    Article  Google Scholar 

  • Maged Mahmoud Abou-El-Enain (2006) Chromosomal variability in the genus Primula (Primulaceae). Bot J Linn Soc 150(2):211–219

    Article  Google Scholar 

  • Marcon AB, Barros IC, Guerra M (2003) Variation in Chromosome Numbers, CMA Bands and 45S rDNA Sites in Species of Selaginella (Pteridophyta). Ann Bot 95:271–276

    Article  CAS  Google Scholar 

  • Marhold K, Breitwieser I (2010) IAPT/IOPB chromosome data 9. Taxon 59(4):1298–1302

    Google Scholar 

  • Marian O, Linde-laursen IB (2008) Meiotic analysis of Danish species of Barbarea (Brassicaceae) using FISH: chromosome numbers and rDNA sites. Hereditas 145:215–219

    Article  Google Scholar 

  • McWilliam JR, Neal-Smith CA (1962) Tetraploid and hexaploid chromosome races of Phalaris arundinacea L. Crop Pasture Sci 13:1–9

    Article  Google Scholar 

  • Meyerson LA, Mooney HA (2007) Invasive alien species in an era globalization. Front Ecol Environ 5(4):199–208

    Article  Google Scholar 

  • Misra MP (1972) Cytological studies in some Indian Potamogeton and Aponogeton species. Bull Bot Soc Bengal 26:47–51

    Google Scholar 

  • Mollot G, Pantel JH, Romanuk TN (2017) The effects of invasive species on the decline in species richness: a global meta-analysis. Adv Ecol Res 56:61–83

    Article  Google Scholar 

  • Mráz P, Bourchier RS, Treier UA, Schaffner U, Muller Schaer H (2011) Polyploidy in phenotypic space and invasion context: a morphometric study of Centaurea stoebe S. L. Inernational. J Plant Sci 172(3):386–402

    Article  Google Scholar 

  • Murray MJ, Lincoln DE, Marble PM (1972) Oil composition of Mentha aquatica x M. spicata F1 hybrids in relation to the origin of x M. piperita. Can J Genet Cytol 14:13–29

    Article  CAS  Google Scholar 

  • Nagy DU, Stranczinger SZ, Godi A, Weisz A, Rosche C, Suda J, Mariano M, Pal RW (2017) Does higher ploidy level increase the risk of invasion? A case study with two geo-cytotypes of Solidago gigantea Aiton (Asteraceae). J Plant Ecol. https://doi.org/10.1093/jpe/rtx005

    Google Scholar 

  • Ogra RK, Mohanpuria P, Upendra KSUK, Madhu SM, Sinha AK, Ahuja PS (2009) Indian calamus (Acorus calamus L.): not a tetraploid. Curr Sci 97(11):1644–1647

    Google Scholar 

  • Olden JD, McCarthy JM, Maxted JT, Fetzer WW, Vander Zanen JM (2006) The rapid spread of rusty crayfish (Orconectus rusticus) with observations on native crayfish declines in Wisconsin (USA) over the past 130 years. Biol Invasion 8:1621–1628

    Article  Google Scholar 

  • Ottonello D, Romano S, Alliata N (1985) Numeri Cromosomici per la flora Italiana: 1037–1048. Inf Bot Ital 17:91–98

    Google Scholar 

  • Palmgren O (1939) Cytological studies in Potamogeton. Preliminary note. Bot Notiser 1939:246–248

    Google Scholar 

  • Pandit MK (2006) Continuing the search for pattern among rare plants: are diploid species more likely to be rare? Evol Ecol Res 8:543–552

    Google Scholar 

  • Pandit MK, Tan HTW, Bisht MS (2006) Polyploidy in invasive plant species of Singapore. Bot J Linn Soc 151:395–403

    Article  Google Scholar 

  • Pandit MK, Pocock MJO, Kunin WE (2011) Ploidy influences rarity and invasiveness in plants. J Ecol 99:1108–1115

    Article  Google Scholar 

  • Pellicer J, Laura J, Kelly LJ, Magdalena C, Leitch I (2013) Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies). –. Genome 56:1–13

    Article  CAS  Google Scholar 

  • Peruzzi L, Cesca G (2005) Chromosome numbers of flowering plants from Calabria, S Italy, II. Willdenowia Bd 34(2):353–360

    Article  Google Scholar 

  • Pieterse AH, Verkelij AC, Staphorst PM (1985) Acomperative study of isoenzyme patterns, morphology and chromosome number of Hydrilla Verticilata. Royle in Africa. J Aquat Plant Manag 23:72–76

    Google Scholar 

  • Prančl J, Kaplan Z, Trávnıček P, Jarolımovč V (2014) Genome size as a key to evolutionary complex aquatic plants: polyploidy and hybridization in Callitriche (Plantaginaceae). PLoS One 9(9):e105997. https://doi.org/10.1371/journal.pone.0105997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • R Development Core Team (2012) An introduction to R, version 2.15.1, R foundation for statistical computing. http://cran.r-project.org/

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  • Roalson EH (2008) Asynopsis of chromosome number variation in the cyperaceae. Bot Rev 74:209–393

    Article  Google Scholar 

  • Rosche C, Durka W, Hensen I, Mráz P, Hartmann M, Muller-Scharer H, Lachmuth S (2016) The population genetics of the fundamental cytotype-shift in invasive Centaurea stoebe s.l.: genetic diversity, genetic differentiation and small-scale genetic structure differ between cytotypes but not between ranges Biol Invasions. https://doi.org/10.1007/s10530-016-1133-2

  • Rosche C, Mráz Durka W, Lachmuth S (2017) Invasion success in polyploids: the role of inbreeding in the contrasting colonization abilities of diploid versus. J Ecol. https://doi.org/10.1111/1365-2745.12670

    Google Scholar 

  • Rychlewski J, Jankun A (1972) Chromosome numbers of some polish pteridophytes. Acta Biol Crac Ser Bot 15:51–60

    Google Scholar 

  • Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, Grosberg RK, Hastings A, Holt RD, Mayfield MM, O’Connor MI, Rice WR (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:465–471

    Article  PubMed  Google Scholar 

  • Shah MA, Reshi Z (2014) Characterization of alien aquatic flora of Kashmir Himalaya: implications for invasion management. Trop Ecol 55:143–157

    Google Scholar 

  • Sharma AK, Chatterjee T (1967) Cytotaxonomy of Helobiae with special reference to mode of evolution. Cytologia 32:286–307

    Article  Google Scholar 

  • Shigenobu Y, Tanaka R (1980) Karyomorphological studies on three species of Nymphoides in Japan. J Jpn Bot 55:244–248

    Google Scholar 

  • Shirley AG, Mauricio D, Janet CB (2011) Relationships among the confounding genera Ammannia, Hionanthera, Nesaea and Rotala (Lythraceae). Bot J Linnean Soc 166:1–9

    Article  Google Scholar 

  • Soltis DE, Buggs RJA, Doyle JJ, Soltis PS (2010) What we still don’t know about polyploidy. Taxon 59:1387–1403

    Google Scholar 

  • Stebbins GL (1985) Polyploidy, hybridization, and the invasion of new habitats. Ann Mo Bot Gard 72:824–832

    Article  Google Scholar 

  • Stepankova Jitka (1993) Myosotis margaritae—a new species from Bulgaria. Folia Geobot Phytotaxon 28(3):279–288

    Article  Google Scholar 

  • Stergianou KK, Fowler K (1990) Chromosome numbers and taxonomic implications in the fern genus Azolla (Azollaceae). Plant Syst Evo 17(3–4):123–139

    Google Scholar 

  • Subramanian D (1988) Cytological studies of some mangrove flora of Tamilnadu. Cytologia 53:87–92

    Article  Google Scholar 

  • Suda J, Pyšek P (2010) Flow cytometry in botanical research: introduction. Preslia 82:1–2

    Google Scholar 

  • Suda J, Kron P, Husband BC, Trávníček P (2007) Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. In: Dolezˇel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley, Weinheim, pp 103–130

    Chapter  Google Scholar 

  • Tanahara AI, Yuki MM (2010) Genetic diversity and population genetic differentiation in the endangered annual weed, Bidens cernua (Compositae), and two common congeners in Japan. Weed Biol Manag 10:113–119

    Article  CAS  Google Scholar 

  • Tanaka N (1948) The problem of aneuploidy Biological contribution in Japan (in Japanese) 4. Hokuryukan, Tokyo, pp 136–317

    Google Scholar 

  • Taylor RL, Mulligan GA (1968) Flora of Queen Charlotte islands, part 2. Cytological aspect of the vascular plants. Canada Department of Agriculture, Ottawa

    Google Scholar 

  • te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Jan Suda Kubesova M, Pysek P (2012) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45

    Article  Google Scholar 

  • Thurling N (1968) A cytotaxonomic study of Australian Cardamine. Aust J Bot 16(3):515–523

    Article  Google Scholar 

  • Treier UA, Broennimann O, Normand S, Guisan A, Schaffner U, Steinger T, Muller Schaer H (2009) Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa. Ecology 90:1366–1377

    Article  PubMed  Google Scholar 

  • Tryon RM, Tryon AF (1982) Ferns and allied plants with special reference to tropical America, Springer, New York

  • Tucker AO, Chambers HL (2002) Mentha canadensis L. (Lamiaceae): a relict amphidiploids from the Lower Tertiary. Taxon 51:703–718

    Article  Google Scholar 

  • Tucker AO, Fairbrothers DE (1981) A euploid series in an F1 interspecific hybrid progeny of Mentha (Lamiaceae). Bull Torrey Bot Club 108:51–53

    Article  Google Scholar 

  • Urbanska-worytkiewicz K (1975) Cytological variation within Lemna L. Aquatic Bot 1:377–394

    Article  Google Scholar 

  • Urbanska-worytkiewicz K (1980) Cytological variation within the family of Lemnaceae. Veröff. Geobot Inst ETH Stiftung Rübel Zürich 70:30–101

    Google Scholar 

  • Van Vierssen W (1982) The ecology of communities dominated by Zannichellia taxa in Western Europe. I. Characterization and autecology of the Zannichellia taxa. Plant Commun 12:112–155

    Google Scholar 

  • Verlaque R, Aboucaya A, Fridlender A (2002) Invasive alien flora of France: ecology, life-forms and polyploidy. Bot Helv 112:121–136

    Google Scholar 

  • Walter VB (1946) Cytological studies in the Alismaceae. Bot Gaz 108:262–267

    Article  Google Scholar 

  • Walter B, Marion H, Herbert H (2006) Evolution of hybrid taxa in Nasturtium R.Br. (Brassicaceae). Folia Geobotanica 34(4):421–433

    Google Scholar 

  • Weber E (2003) Invasive plant species of the world: a reference guide to environmental weeds. CABI Publishing, Wallingford

    Google Scholar 

  • Welles SA, Ellstrand NC (2016) Rapid range expansion of a newly formed allopolyploid weed in the genus Salsola. Am J Bot 103(4):1–5

    Article  CAS  Google Scholar 

  • Yano O, Katsuyama T, Tsubota H (2004) Molecular phylogeny of Japanese Eleocharis (Cyperaceae) based on ITS sequence data and Chromosomal evolution. J Plant Res 117:409–419

    Article  CAS  PubMed  Google Scholar 

  • Yurtsev BA, Zhukova PG, Plieva TV, Raszhivin VY, Sckretareva NA (1975) Interesting floristic finds in the eastern most Chukotk Peninsula III. Bot Zh SSR 60:233–247

    Google Scholar 

  • Zedek F, Šmerda J, Šmarda P, Bureš P (2010) Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. BMC Plant Biol. https://doi.org/10.1186/1471-2229-10-265

    PubMed  PubMed Central  Google Scholar 

  • Zedler JB, Kercher SM (2004) Causes and consequences of invasive plants in Wetlands: opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23:431–452

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Department of Botany; University of Kashmir, for providing research facilities. Financial support by the University Grants Commission (UGC), New Delhi, through its Indo–US project under 21st Century Knowledge Initiative to MAS is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gowher A. Wani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. J. Reigosa.

Appendix

Appendix

Familywise conspectus of aquatic alien plant species of Kashmir Himalayan fresh water ecosystems depicting nativity, growth form, invasion status, ploidy status and primary published source.

Families/species

Nt

Gf

Is

Chromosome status

Diploidy

Polyploidy

Primary published source

Alismataceae

 Alisma gramineum Lej.

Eu

E

III

2n = 14

_

 

Erlandsson (1946)

 Alisma lanceolatum With

Eu

E

III

2n = 26

 

*

Bjorkqvist et al. (1969)

 Alisma plantago-aquatica L.

Eu

E

V

2n = 12, 10, 14

_

 

Walter (1946)

 Sagittaria latifolia Willd.

Nam

E

III

2n = 22

_

 

Walter (1946)

 Sagittaria sagittifolia L.

Eu

E

V

2n = 22, 16

_

 

Lohammar (1931)

Amaranthaceae

 Amaranthus lividus L.

As, Af, Sam

E

II

2n = 34

_

 

Bao-Hua et al. (2002)

 Alternanthera sessilis (L.) R. Br. ex DC.

Sam

E

IVb

2n = 34, 96

_

*

Jansen (2004)

Apiaceae

 Berula erecta (Huds.) Coville

Eu

E

III

2n = 18

_

 

Hamal et al. (1986)

Araceae

 Acorus calamus L.

As

E

II

2n = 24, 36, 48, 72

_

*

Ogra et al. (2009)

Asteraceae

 Bidens cernua L.

Nam

E

IVa

2n = 24, 48

_

*

Crowel and Parker (1981)

 Bidens tripartita L.

Eu

E

II

2n = 24, 48, 72

_

*

Tanahara et al. (2010)

Azollaceae

 Azolla cristata Kaulf.

Nam

FF

III

2n = 44, 66, 88

 

*

Stergianou and Fowler (1990)

Boraginaceae

 Myosotis caespitosa Schultz

Nam

E

IVb

2n = 44, 48, 88

_

*

Stepankova (1993)

 Myosotis scorpioides L.

Eu

E

V

2n = 22

_

 

Stepankova (1993)

Brassicaceae

 Barbarea intermedia Boreau

Eu

E

IVa

2n = 16

_

 

Marian et al. (2008)

 Barbarea vulgaris W. T. Aiton

Eu

E

IVa

2n = 18

_

 

Marian et al. (2008)

 Cardamine flexuosa With

Eu

E

IVb

2n = 32

 

*

Lihova et al. (2006)

 Cardamine hirsuta L.

Eu

E

IVb

2n = 16

_

 

Thurling (1968)

 Nasturtium officinale W. T.

Eu

E

IVb

2n = 32

 

*

Walter et al. (2006)

 Rorippa islandica (Oeder) Borbás

Eu

E

IVb

2n = 16

_

 

Bleeker et al. (2007)

 Butomus umbellatus L.

Eu

E

V

2n = 26, 39

_

*

Anna and Vlasta (1993)

Callitrichaceae

 Callitriche stagnalis Scop

Eu

E

IVb

2n = 10

_

 

Alina et al. (2007)

Caryophylaceae

 Myosoton aquaticum (L.) Moench

Eu

E

III

2n = 28

_

 

Fernandes and Leitao (1971)

 Sagina saginoides (L.) H.Karst.

Eu

E

IVb

2n = 22

_

 

Mardon et al. (2005)

Ceratophyllaceae

 Ceratophyllum demersum L.

Eu

S

V

2n = 24, 38, 40, 48

_

*

Love et al. (1956)

Cyperaceae

 Carex diluta Bieb.

Eu

E

V

2n = 56

 

*

Favarger et al. (1979)

 Cladium mariscus (L.) Pohl

Eu

E

III

2n = 18

_

 

Favarger et al. (1979)

 Cyperus difformis L

Eu

E

V

2n = 36

 

*

Kumar and Subramaniam (1986)

 Cyperus flabelliformis Rottb

Af

E

IVa

2n = 30

 

*

Bir et al. (1992)

 Cyperus fuscus L.

Eu

E

IVb

2n = 36, 48, 72

_

*

Subramanian (1988)

 Cyperus globosus L.

Af, Eu

E

V

2n = 40

 

*

Bir et al. (1992)

 Cyperus glomeratus L.

Eu

E

V

2n = 60

 

*

Bir et al. (1992)

 Cyperus iria L.

As, Af

E

IVb

n-56, 64

_

 

Bir et al. (1992)

 Cyperus pumilus L.

Au

E

IVa

n-45

_

 

Bir et al. (1992)

 Cyperus rotundus L.

Eu

E

V

2n = 42–80, 108

 

*

Bir et al. (1992)

 Cyperus sanguinolentus L

NAm,SAm

E

III

n-40, 56

_

 

Bir et al. (1992)

 Eleocharis atropurpurea (Retz.)

SAm

E

III

2n = 20

_

 

Yano et al. (2004)

 Eleocharis acicularis (L.) Roem. & Schult.

NAm,SAm

E

III

2n = 20

_

 

Zedek et al. (2010)

 Eleocharis palustris (L.) Roem. & Schult.

Eu

E

III

2n = 16

_

 

Tanaka (1948)

 Eleocharis parishii Britton

Nam

E

II

n-5

_

 

Tanaka (1948)

 Eleocharis pauciflora Link

Nam

E

II

2n = 76

 

*

Roalson (2008)

 Fimbristylis dichotoma (L.) Vahl.

Af, As

E

IVb

2n = 10

_

 

Da Silva et al. (2008)

 Scirpus juncoides Roxb

NAm

E

II

2n = 74

 

*

Yano and Hoshino (2005)

 Scirpus martimus L.

Eu

E

II

2n = 86, 104, 110

_

*

Hakansson (1928)

 Scirpus triqueter L.

Eu

E

IVa

2n = 40, 42

 

*

Da Silva et al. (2008)

Elatinaceae

 Elatine triandra Schkuhr

Eu

S

IVa

2n = 40, 36

 

*

Frisendahl et al. (1927)

 Myriophyllum verticillatum L.

Eu

S

V

2n = 28

 

*

Taylor and Mulligan (1968)

 Myriophyllum spicatum L.

Eu

S

V

2n = 42

 

*

Aiken et al. (1978)

 Myriophyllum aquaticum (Vell.) Verdc.

SAM

S

V

2n = 14

_

 

Love et al. (1961)

 Hippuris vulgaris L.

Eu

E

IVa

2n = 16, 30, 32

_

*

Marhold and Breitwieser (2010)

Hydrocharitaceae

 Hydrilla verticillata (L.f.) Royle

Eu

S

V

2n = 16

_

 

Pieterse et al. (1985)

 Hydrocharis dubia (Blume) Backer

As

E

IVb

2n = 16

_

 

Goldblatt and Johnson (1991)

 Vallisneria spiralis L.

Eu

FF

III

2n = 20, 30, 40

_

*

Goldblatt and Johnson (1991)

Juncaceae

 Juncus articulatus L.

Eu

E

V

2n = 80

 

*

Harriman and Redmond (1976)

 Juncus bufonius L.

Eu

E

IVb

2n = 30, 34

 

*

Tylor and Mulligon (1968)

 Juncus effusus L.

Eu

E

IVb

2n = 40, 42, 80

 

*

Harriman et al. (1975)

 Juncus inflexus L.

Eu

E

II

2n = 40

_

 

Harriman et al. (1975)

Juncaginaceae

 Triglochin palustris L.

Eu

E

III

2n = 24

_

 

Dawson (2008)

Labiatae (Lamiaceae)

 Mentha aquatica L.

Eu

E

III

2n = 96

 

*

Murray et al. (1972)

 Mentha arvensis L.

Eu

E

III

2n = 72

 

*

Tucker and Fairbrothers (1981)

 Mentha longifolia (L.) Huds

Eu

E

V

2n = 24

_

 

Tucker and Chambers (2002)

 Mentha piperita L.

Eu

E

IVb

2n = 144

 

*

Bhat Savithri et al. (2002)

 Mentha spicata L.

NAm

E

II

2n = 48

 

*

Murray et al. (1972)

 Lycopus europaeus L.

Eu

E

IVa

2n = 22

_

 

Kondo and Motohashi (2009)

Lemnaceae

 Lemna gibba L.

Eu

FF

IVa

2n = 40, 50, 60, 80

_

*

Daniel et al. (2005)

 Lemna minor L.

Eu

FF

V

2n = 126

 

*

Daniel et al. (2005)

 Lemna turionifera Landolt

NAm

FF

II

2n = 40, 42, 50, 80

*

Urbanska-worytkiewicz (1980)

 Lemna trisulca L.

Eu

FF

II

2n = 20, 40, 60, 80

_

*

Urbanska-worytkiewicz (1975)

 Spirodela polyrhiza (L.) Schleid

Eu

FF

V

2n = 80

 

*

Urbanska-worytkiewicz (1975)

 Wolffia arrhiza (L.) Horkel ex Wimm.

Eu

FF

III

2n = 42

_

 

Urbanska-worytkiewicz (1975)

 Utricularia aurea Lour.

As, Au

S

III

2n = 80

 

*

Subramanyam (1988)

Lentibulariacea

 Ammannia auriculata Willd.

As, Au

E

III

n-16

_

 

Shirley et al. (2011)

 Ammannia baccifera L.

As

E

III

2n = 24

_

 

Shirley et al. (2011)

 Lythrum salicaria L.

Eu

E

III

2n = 30

_

*

Urbanska-worytkiewicz (1975)

 Rotala densiflora (Willd.) Koehne

As, Au

E

IVb

2n = 32

_

 

Urbanska-worytkiewicz (1975)

Marsiliaceae

 Marsilia quadrifolia L.

Eu

RF

V

2n = 40

_

 

Marcon et al. (2003).

Menyanthaceae

 Menyanthes trifoliata L.

Eu

E

III

2n = 54

_

*

Peruzzi et al. (2005)

 Nymphoides peltata (S.G.Gmel.) Kuntze

Eu

RF

V

2n = 24, 54, 56

_

*

Shigenobu and Tanaka (1980)

Nelumbonaceae

 Nelumbo nucifera Gaertn.

As, Eu

RF

V

2n = 16

_

 

Huang (1992)

Nymphaeaceae

 Nymphaea alba L

Eu

RF

IVb

2n = 48, 56, 64, 84

 

*

Pellicer (2013)

 Nymphaea lotus L.

Eu

RF

II

2n = 28, 56, 84

_

*

Pellicer (2013)

 Nymphaea mexicana Zucc.

NAm

RF

III

2n = 56

 

*

Diao et al. (2006)

 Nymphaea tetragona Georgi

Eu

RF

III

2n = 28

_

 

Diao et al. (2006)

 Nymphaea tuberosa Paine.

NAm

RF

III

2n = 84

 

*

Pellicer (2013)

Onagraceae

 Epilobium palustre L.

Eu

E

IVa

2n = 36

_

 

Krasnikov et al. (1990)

Orchidaceae

 Spiranthes lancea (Thunb.) Baker

Eu

E

II

2n = 72

 

*

Lou (2004)

Poaceae

 Echinochloa colonum (L.) Link

As

E

III

2n = 36, 48, 54

 

*

Gould and Soderstrom (1967)

 Echinochloa crus-galli (L.) P.Beauv.

Eu

E

IVa

2n = 54

 

*

Gould and Soderstrom (1967)

 Paspalum paspalodes (Michx.) Scribn.

SAm

E

III

n-30

 

*

Gould and Soderstrom (1967)

 Phalaris arundinacea L.

Eu

E

IVb

2n = 28, 42

 

*

McWilliam & Neal-Smith (1962)

 Phragmites australis (Cav.) Trin. ex Steud.

Eu

E

V

2n = 96

 

*

Connor et al. (1998)

Polygonaceae

 Polygonum hydropiper L.

Eu

RF

V

2n = 20, 22

_

 

Love (1942)

 Rumex chalepensis Mill

As

E

III

2n = 70, 90

 

*

Love and Love (1975)

 Rumex conglomeratus Murray

Eu

E

II

2n = 20

_

 

Love and Love (1975)

 Rumex dentatus L.

Eu

E

IVb

2n = 40

 

*

Love (1967)

Potamogetonaceae

 Potamogeton crispus L

Eu

S

V

2n = 50, 52, 56, 72, 78

*

Jankun et al. (1989)

 Potamogeton filiformis Pers.

Eu

RF

IVb

2n = 66, 78

 

*

Sharma and Chatterjee (1967)

 Potamogeton fluitans Roth

Eu

RF

IVb

2n = 52

 

*

Yurtsev and Zhukova (1975)

 Potamogeton natans L.

Eu

S

IVb

2n = 42, 52

 

.*

Kuleszanka (1934)

 Potamogeton pectinatus L

Eu

RF

V

2n = 80, 70–85, 87

*

Kalkman and Van Wijk (1984)

 Potamogeton perfoliatus L.

Eu

S

II

2n = 26, 40, 52, 78

 

*

Yurtsev et al. (1975)

 Potamogeton pusillus L

Eu

S

III

2n = 26

_

 

Arohonka et al. (1982)

 P. berchtoldii Fieber

Eu

RF

Ivb

2n = 26, 28

 

*

Palmgren (1939)

 P. nodosus Poir.

Eu

RF

V

2n = 52

 

*

Ottonello et al. (1985)

 P. lucens L.

Eu

S

IVa

2n = 52

 

*

Hollingsworth et al. (1998)

 P. trichoides Cham. & Schltdl.

Af

RF

II

2n = 26

-

 

Palmgren (1939)

 P. indicus Roxb.

As

S

III

2n = 42, 44, 46, 50, 56

 

*

Misra (1972)

 P. amblyphyllus

NAm

S

IVa

2n = 52, 84

 

*

Love and Love (1982)

 P. wrightii

As

FF

IVa

2n = 52

 

*

Ganie (2010)

Primulaceae

 Primula sp.

NAm

RF

III

2n = 44

 

*

Maged (2006)

Ranunculaceae

 Caltha alba K. Jacq

Eu

E

II

2n = 32

_

 

Kumar et al. (2012)

 Rananculus aquatilis L.

Eu

RF

IVb

2n = 16, 24, 32, 48

_

*

Love et al. (1982)

 Rananculus lingua L.

Eu

RF

III

2n = 64, 128

 

*

Love et al. (1982)

Salviniaceae

 Salvinia natans All.

Eu

FF

V

2n = 18

_

 

Tryon and Tryon (1982)

Scrophulariaceae

 Veronica beccabunga L.

Eu

E

III

2n = 18

_

 

Rychlewski and Jankun (1972)

Sparganiaceae

 Sparganium erectum Huds

Eu

E

V

2n = 30

_

 

Love and Love (1942)

Typhaceae

 Typha angustata Bory & Chaub.

Eu, NAm

E

V

2n = 60

 

*

Heiser Charles (1948)

Zannichelliaceae

 Zannichellia palustris L.

Eu

S

III

2n = 24

 

Vierssen (1982)

As Asia, Au Australia, Af Africa, Eu Europe, Nam North America, Sam South America, E emergent, S submerged, RF rooted free floating, FF free floating, NT native, GF growth form, Is invasion status, * polyploidy, - diploidy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, G.A., Shah, M.A., Reshi, Z.A. et al. Polyploidy determines the stage of invasion: clues from Kashmir Himalayan aquatic flora. Acta Physiol Plant 40, 58 (2018). https://doi.org/10.1007/s11738-018-2629-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2629-4

Keywords

Navigation