Skip to main content
Log in

Towards immunity of oil palm against Ganoderma fungus infection

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The first record of Ganoderma can be traced back to the Pharmacopoeia written by Chinese scientists in first century B.C. Several Ganoderma species are known as “white rot” fungi, which cause the display of the white cellulose on wood by degrading the lignin component. Ganoderma boninense is the main agent of basal stem rot (BSR) disease, as a persistent problem in the oil palm (Elaeis guineensis, Jacq.) cultivation that needs to be controlled. Oil palm, which is the main host of this pathogen, is an economically important crop grown in Southeast Asia, Africa, and America. Due to the negative effects of Ganoderma on the plants, especially on oil palm, this review focuses on the mechanisms of Ganoderma infection and its control, the importance of lignin and silicon (Si) to plant defense. This review also explores different methods for Ganoderma control and techniques for producing less susceptible oil palm. Genetic manipulation of oil palm for enhancing resistance to Ganoderma is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdullah F, Ilias G, Nelson M, Izzati N, Yusuf U (2003) Disease assessment and the efficacy of Trichoderma as a biocontrol agent of basal stem rot of oil palms. Sci Putra 12:31–33

    Google Scholar 

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell Online 16:3098–3109

    Article  CAS  Google Scholar 

  • Alizadeh F, Abdullah SNA, Khodavandi A, Abdullah F, Yusuf UK, Chong PP (2011) Differential expression of oil palm pathology genes during interactions with Ganoderma boninense and Trichoderma harzianum. J Plant Physiol 168:1106–1113

    Article  CAS  PubMed  Google Scholar 

  • Antolín-Llovera M, Ried MK, Binder A, Parniske M (2012) Receptor kinase signaling pathways in plant-microbe interactions. Annu Rev Phytopathol 50:451–473

    Article  PubMed  CAS  Google Scholar 

  • Azizi P, Rafii M, Abdullah S, Nejat N, Maziah M, Hanafi M, Latif M, Sahebi M (2014) Toward understanding of rice innate immunity against Magnaporthe oryzae. Critical Reviews in Biotechnology 1–10

  • Badalyan SM, Innocenti G, Garibyan NG (2004) Interactions between xylotrophic mushrooms and mycoparasitic fungi in dual-culture experiments. Phytopathol Mediterr 43:44–48

    Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Bartley J, Keith G (2011) Silicon-the benefits of a non-essential plant nutrient

  • Bindschedler LV, Tuerck J, Maunders M, Ruel K, Petit-Conil M, Danoun S, Boudet A-M, Joseleau J-P, Paul Bolwell G (2007) Modification of hemicellulose content by antisense down-regulation of UDP-glucuronate decarboxylase in tobacco and its consequences for cellulose extractability. Phytochemistry 68:2635–2648

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science (New York, NY) 324:742

    Article  CAS  Google Scholar 

  • Breton F, Hasan Y, Hariadi S, Lubis Z, De Franqueville H (2006) Characterization of parameters for the development of an early screening test for basal stem rot tolerance in oil palm progenies. J Oil Palm Res 24–36

  • Brooks DM, Bender CL, Kunkel BN (2005) The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol Plant Pathol 6:629–639

    Article  CAS  PubMed  Google Scholar 

  • Bruce A, Highley TL (1991) Control of growth of wood decay Basidiomycetes by Trichoderma spp. and other potentially antagonistic fungi. For Prod J 41:63–67

    CAS  Google Scholar 

  • Byfield GE, Upchurch RG (2007) Effect of temperature on delta-9 stearoyl-ACP and microsomal omega-6 desaturase gene expression and fatty acid content in developing soybean seeds. Crop Sci 47:1698–1704

    Article  CAS  Google Scholar 

  • Cai K, Gao D, Luo S, Zeng R, Yang J, Zhu X (2008) Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiol Plant 134:324–333

    Article  CAS  PubMed  Google Scholar 

  • Cheah S-C, Sambanthamurthi R, Abdullah SNA, Othman A, Manaf MAA, Ramli US, Kadir APG (1995) Towards genetic engineering of oil palm (Elaeis guineensis Jacq.). In: Plant lipid metabolism. Springer, pp 570–572

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • Chung W, Huang J, Huang H (2005) Formulation of a soil biofungicide for control of damping-off of Chinese cabbage (Brassica chinensis) caused by Rhizoctonia solani. Biol Control 32:287–294

    Article  Google Scholar 

  • Cooper RM, Flood J, Rees R (2011) Ganoderma boninense in oil palm plantations: current thinking on epidemiology, resistance and pathology. Planter 87:515–526

    Google Scholar 

  • Cordo CA, Monaco CI, Segarra CI, Simon MR, Mansilla AY, Perelló AE, Kripelz NI, Bayo D, Conde RD (2007) Trichoderma spp. as elicitors of wheat plant defense responses against Septoria tritici. Biocontrol Sci Technol 17:687–698

    Article  Google Scholar 

  • Corley RHV, Tinker P (2008a) The oil palm. Wiley, Oxford

    Google Scholar 

  • Corley RHV, Tinker PBH (2008b) The oil palm, 5th edn. Wiley, Oxford

    Google Scholar 

  • de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Rodriguez Egea P, Bögre L, Grant M (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J 26:1434–1443

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Wit PJ (2007) How plants recognize pathogens and defend themselves. Cell Mol Life Sci 64:2726–2732

    Article  PubMed  CAS  Google Scholar 

  • Durand-Gasselin T, Asmady H, Flori A, Jacquemard J, Hayun Z, Breton F, De Franqueville H (2005) Possible sources of genetic resistance in oil palm (Elaeis guineensis Jacq.) to basal stem rot caused by Ganoderma boninense-prospects for future breeding. Mycopathologia 159:93–100

    Article  CAS  PubMed  Google Scholar 

  • Fee CG (2011) Management of Ganoderma Diseases in Oil Palm Plantations. In: Sustainable Agriculture—an insight into Ganoderma, Kuala Lumpur. pp 325–339

  • Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK (2011) Silicon enhances suberization and lignification in roots of rice (Oryza sativa). JExB 62:2001–2011

    CAS  Google Scholar 

  • Flor H (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathology 32:e69

    Google Scholar 

  • Foan CC, Lee Y, Tan JS, Alwee SSRS (2012) Amplification and sequencing of partial-length disease resistance gene homologues coding for NBS-LRR proteins in oil palm (Elaeis guineensis). Asia Pac J Mol Biol Biotechnol 20:25–31

    Google Scholar 

  • Franke R, Schreiber L (2007) Suberin-a biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol 10:252–259

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2005) Silicon improves water use efficiency in maize plants. J Plant Nutr 27:1457–1470

    Article  CAS  Google Scholar 

  • George S, Chung G, Zakaria K (1996) Updated results (1990–1995) on trunk injection of fungicides for the control of Ganoderma basal stem rot. In: Proceedings of the 1996 PORIM International Palm Oil Congress-Agriculture Conference, Kuala lumpur, Malaysia. pp 508–515

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Göhre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215

    Article  PubMed  CAS  Google Scholar 

  • Gou J-Y, Park S, Yu X-H, Miller LM, Liu C-J (2008) Compositional characterization and imaging of “wall-bound” acylesters of Populus trichocarpa reveal differential accumulation of acyl molecules in normal and reactive woods. Planta 229:15–24

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Kanyuka K (2007) Resistance genes (R genes) in plants. eLS

  • Idris A, Kushairi A, Ismail S, Ariffin D (2004) Selection for partial resistance in oil palm progenies to Ganoderma basal stem rot. J Oil Palm Res 16:12–18

    Google Scholar 

  • Janjusevic R, Abramovitch RB, Martin GB, Stebbins CE (2006) A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311:222–226

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kachroo P, Venugopal SC, Navarre DA, Lapchyk L, Kachroo A (2005) Role of salicylic acid and fatty acid desaturation pathways in ssi2-mediated signaling. Plant Physiol 139:1717–1735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci 103:11086–11091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kidd P, Llugany M, Poschenrieder C, Gunse B, Barcelo J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). JExB 52:1339–1352

    CAS  Google Scholar 

  • Kim SG, Kim KW, Park EW, Choi D (2002) Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92:1095–1103

    Article  PubMed  Google Scholar 

  • Kinge T, Mih A (2011) Ganoderma ryvardense sp. nov. associated with basal stem rot (BSR) disease of oil palm in Cameroon

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2011) Dictionary of the fungi, 10th edn. CBAI Publishing, Trowbridge

    Google Scholar 

  • Laluk K, Mengiste T (2010) Necrotroph attacks on plants: wanton destruction or covert extortion? Arabidopsis Book Am Soc Plant Biol 8:e0136

    Article  Google Scholar 

  • Laluk K, Luo H, Chai M, Dhawan R, Lai Z, Mengiste T (2011) Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. Plant Cell Online 23:2831–2849

    Article  CAS  Google Scholar 

  • Lim HP, Fong YK (2005) Research on basal stem rot (BSR) of ornamental palms caused by basidiospores from Ganoderma boninense. Mycopathologia 159:171–179

    Article  CAS  PubMed  Google Scholar 

  • Low E-TL, Rosli R, Jayanthi N, Azizi N, Chan K-L, Maqbool NJ, Maclean P, Brauning R, McCulloch A, Moraga R (2014) Analyses of hypomethylated oil palm gene space. PLoS One 9:e86728

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In: Silicon in Agriculture, vol 8. Elsevier, pp 17–39

  • Mansfield SD (2009) Solutions for dissolution-engineering cell walls for deconstruction. Curr Opin Biotechnol 20:286–294

    Article  CAS  PubMed  Google Scholar 

  • Markom MA, Shakaff AY, Adom AH, Ahmad MN, Hidayat W, Abdullah AH, Fikri NA (2009) Intelligent electronic nose system for basal stem rot disease detection. Comput Electron Agric 66:140–146

    Article  Google Scholar 

  • Martínez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol 30:425–444

    Article  Google Scholar 

  • Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Ma JF, Iwashita T (2005) Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant Cell Physiol 46:279–283

    Article  CAS  PubMed  Google Scholar 

  • Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15:349–357

    Article  CAS  PubMed  Google Scholar 

  • Naher L, Ho C-L, Tan SG, Yusuf UK, Abdullah F (2011) Cloning of transcripts encoding chitinases from Elaeis guineensis Jacq. and their expression profiles in response to fungal infections. Physiol Mol Plant Pathol 76:96–103

    Article  CAS  Google Scholar 

  • Naher L, Tan SG, Ho CL, Yusuf UK, Ahmad SH, Abdullah F (2012a) mRNA Expression of EgCHI1, EgCHI2, and EgCHI3 in Oil Palm Leaves (Elaeis guineesis Jacq.) after Treatment with Ganoderma boninense Pat. and Trichoderma harzianum Rifai. The Scientific World Journal 2012

  • Naher L, Tan SG, Yusuf UK, Ho CL, Siddiquee S (2012b) Activities of chitinase enzymes in the oil palm (Elaeis guineensis Jacq.) in interactions with pathogenic and non-pathogenic fungi. Plant. OMICS 5:333

    CAS  Google Scholar 

  • Nakashima J, Chen F, Jackson L, Shadle G, Dixon RA (2008) Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa): effects on lignin composition in specific cell types. New Phytol 179:738–750

    Article  CAS  PubMed  Google Scholar 

  • Nicaise V, Roux M, Zipfel C (2009) Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol 150:1638–1647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nürnberger T, Kemmerling B (2009) Pathogen-associated molecular patterns (PAMP) and PAMP-triggered immunity. Annu Plant Rev 34:16–47

    Google Scholar 

  • Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    Article  PubMed  Google Scholar 

  • Paterson RRM (2007) Ganoderma disease of oil palm—a white rot perspective necessary for integrated control. Crop Protect 26:1369–1376

    Article  Google Scholar 

  • Paterson RRM, Moen S, Lima N (2009) The feasibility of producing oil palm with altered lignin content to control Ganoderma disease. J Phytopathol 157:649–656

    Article  CAS  Google Scholar 

  • Paterson RRM, Sariah M, Lima N (2013) How will climate change affect oil palm fungal diseases? Crop Protect 46:113–120

    Article  Google Scholar 

  • Pepeljnjak S, Jalsenjak I, Maysinger D (1981) Influence of microencapsulated propolis extract on bacillus-subtilis strain ip-5832. Acta Pharmaceutica Jugoslavica 31:27–32

    CAS  Google Scholar 

  • Phosri C, Rodriguez A, Sanders IR, Jeffries P (2010) The role of mycorrhizas in more sustainable oil palm cultivation. Agric Ecosyst Environ 135:187–193

    Article  Google Scholar 

  • Prell HH, Day PR (2001) Plant-fungal pathogen interaction: a classical and molecular view. Springer, Germany

    Book  Google Scholar 

  • Rakoczy-Trojanowska M (2002) Alternative methods of plant transformation—a short review. Cell Mol Biol Lett 7:849–858

    PubMed  Google Scholar 

  • Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev 3:29–60

    Article  CAS  Google Scholar 

  • Ralph J, Kim H, Lu F, Grabber JH, Leplé J-C, Berrio-Sierra J, Derikvand MM, Jouanin L, Boerjan W, Lapierre C (2008) Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency). Plant J 53:368–379

    Article  CAS  PubMed  Google Scholar 

  • Rees RW (2006) Ganoderma stem rot of oil palm (Elaeis guineensis): mode of infection, epidemiology and biological control. University of Bath

  • Rees R, Flood J, Hasan Y, Cooper RM (2007) Effects of inoculum potential, shading and soil temperature on root infection of oil palm seedlings by the basal stem rot pathogen Ganoderma boninense. Plant Pathol 56:862–870

    Article  Google Scholar 

  • Rees RW, Flood J, Hasan Y, Potter U, Cooper RM (2009) Basal stem rot of oil palm (Elaeis guineensis); mode of root infection and lower stem invasion by Ganoderma boninense. Plant Pathol 58:982–989

    Article  Google Scholar 

  • Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol Mol Plant Pathol 66:108–115

    Article  CAS  Google Scholar 

  • Rippert P, Puyaubert J, Grisollet D, Derrier L, Matringe M (2009) Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis. Plant Physiol 149:1251–1260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ro DK, Mah N, Ellis BE, Douglas CJ (2001) Functional characterization and subcellular localization of poplar (Populus trichocarpa × Populus deltoides) cinnamate 4-hydroxylase. Plant Physiol 126:317–329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodrigues FÁ, Jurick Ii WM, Datnoff LE, Jones JB, Rollins JA (2005) Silicon influences cytological and molecular events in compatible and incompatible rice-magnaporthe grisea interactions. Physiol Mol Plant Pathol 66:144–159

    Article  CAS  Google Scholar 

  • Ruel K, Berrio-Sierra J, Derikvand MM, Pollet B, Thévenin J, Lapierre C, Jouanin L, Joseleau J-P (2009) Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana. New Phytol 184:99–113

    Article  CAS  PubMed  Google Scholar 

  • Sahebi M, Hanafi MM, Akmar ASN, Rafii MY, Azizi P, Idris A (2015) Serine-rich protein is a novel positive regulator for silicon accumulation in mangrove. Gene 556:170–181

    Article  CAS  PubMed  Google Scholar 

  • Sanderson F (2005) An insight into spore dispersal of Ganoderma boninense on oil palm. Mycopathologia 159:139–141

    Article  CAS  PubMed  Google Scholar 

  • Sanford J, Smith F, Russell J (1993) [36] Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509

    Article  CAS  PubMed  Google Scholar 

  • Sariah M, Paterson RRM, Zainal Abidin MA, Lima N (2011) Ergosterol analyses of oil palm seedlings and plants infected with Ganoderma. Crop Protect 30:1438–1442

    Article  CAS  Google Scholar 

  • Saxena D, Stotzky G (2001) Bt corn has a higher lignin content than non-Bt corn. Am J Bot 88:1704–1706

    Article  CAS  PubMed  Google Scholar 

  • Schneider DJ, Collmer A (2010) Studying plant-pathogen interactions in the genomics era: beyond molecular Koch’s postulates to systems biology. Annu Rev Phytopathol 48:457–479

    Article  CAS  PubMed  Google Scholar 

  • Schwarze FWMR, Jauss F, Spencer C, Hallam C, Schubert M (2012) Evaluation of an antagonistic Trichoderma strain for reducing the rate of wood decomposition by the white rot fungus Phellinus noxius. Biol Control 61:160–168

    Article  Google Scholar 

  • Shibuya N, Minami E (2001) Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant Pathol 59:223–233

    Article  CAS  Google Scholar 

  • Shiu S-H, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci 98:10763–10768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh G, Darus A, Sukaimi J (1991) Ganoderma-the scourge of oil palm in the coastal area. In: Proceedings of Ganoderma workshop, Bangi, Selangor, Malaysia, 11 September 1990. Palm Oil Research Institute of Malaysia, pp 7–35

  • Snyder G, Ingersoll J, Smigocki A, Owens L (1999) Introduction of pathogen defense genes and a cytokinin biosynthesis gene into sugarbeet (Beta vulgaris L.) by Agrobacterium or particle bombardment. Plant Cell Rep 18:829–834

    Article  CAS  Google Scholar 

  • Soepena H, Purba R, Pawirosukarto S (2000) A Control Strategy for Basal Stem Rot (Ganoderma) on Oil Palm. In: Flood J, Bridge PD, Holderness M (eds) Ganoderma diseases of perennial crops UK, p 83

  • Southgate E, Davey M, Power J, Marchant R (1995) Factors affecting the genetic engineering of plants by microprojectile bombardment. Biotechnol Adv 13:631–651

    Article  CAS  PubMed  Google Scholar 

  • Speth EB, Lee YN, He SY (2007) Pathogen virulence factors as molecular probes of basic plant cellular functions. Curr Opin Plant Biol 10:580–586

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Staal J, Kaliff M, Dewaele E, Persson M, Dixelius C (2008) RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens. Plant J 55:188–200

    Article  CAS  PubMed  Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Article  CAS  PubMed  Google Scholar 

  • Suarez V, Staehelin C, Arango R, Holtorf H, Hofsteenge J, Meins F Jr (2001) Substrate specificity and antifungal activity of recombinant tobacco class I chitinases. Plant Mol Biol 45:609–618

    Article  CAS  PubMed  Google Scholar 

  • Susanto A, Sudharto P, Purba R (2005) Enhancing biological control of basal stem rot disease (Ganoderma boninense) in oil palm plantations. Mycopathologia 159:153–157

    Article  CAS  PubMed  Google Scholar 

  • Takka FAS (1999) Calcium alginate microparticles for oral administration: II effect of form ulation factors on drug release and drug entrapment efficiency. J Microencapsul 16:291–301

    Article  PubMed  Google Scholar 

  • Tan Y-C, Yeoh K-A, Wong M-Y, Ho C-L (2013) Expression profiles of putative defence-related proteins in oil palm (Elaeis guineensis) colonized by Ganoderma boninense. J Plant Physiol 170:1455–1460

    Article  CAS  PubMed  Google Scholar 

  • Taylor NJ, Fauquet CM (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol 21:963–977

    Article  CAS  PubMed  Google Scholar 

  • Tee S-S, Tan Y-C, Abdullah F, Ong-Abdullah M, Ho C-L (2013) Transcriptome of oil palm (Elaeis guineensis Jacq.) roots treated with Ganoderma boninense. Tree Genetics & Genomes, pp 1–10

  • Tena G, Boudsocq M, Sheen J (2011) Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol 14:519–529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Travella S, Ross S, Harden J, Everett C, Snape J, Harwood W (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    Article  CAS  PubMed  Google Scholar 

  • Tronchet M, Balague C, Kroj T, Jouanin L, Roby D (2010) Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol 11:83–92

    Article  CAS  PubMed  Google Scholar 

  • Uzal EN, Gómez Ros LV, Pomar F, Bernal MA, Paradela A, Albar JP, Ros Barcelo A (2009) The presence of sinapyl lignin in Ginkgo biloba cell cultures changes our views of the evolution of lignin biosynthesis. Physiol Plant 135:196–213

    Article  CAS  PubMed  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Veronese P, Chen X, Bluhm B, Salmeron J, Dietrich R, Mengiste T (2004) The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection. Plant J 40:558–574

    Article  CAS  PubMed  Google Scholar 

  • Veronese P, Nakagami H, Bluhm B, Abu Qamar S, Chen X, Salmeron J, Dietrich RA, Hirt H, Mengiste T (2006) The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell Online 18:257–273

    Article  CAS  Google Scholar 

  • Vleeshouwers VG, van Dooijeweert W, Govers F, Kamoun S, Colon LT (2000) The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta 210:853–864

    Article  CAS  PubMed  Google Scholar 

  • Ward G, Hadar Y, Dosoretz CG (2004) The biodegradation of lignocellulose by white rot fungi. In: Arora DK (ed) Fungal Biotechnology in Agricultural, Food, and Environmental Applications. Marcel Dekker, New York, pp 393–407

    Google Scholar 

  • Waterken L, Bienfait A, Peeters A (1981) Callose et silice epidermiques. Rapports avec la transpiration cuticulaire. Cellule 73

  • Yeoh K-A, Othman A, Meon S, Abdullah F, Ho C-L (2012) Sequence analysis and gene expression of putative exo-and endo-glucanases from oil palm (Elaeis guineensis) during fungal infection. J Plant Physiol 169:1565–1570

    Article  CAS  PubMed  Google Scholar 

  • Yeoh K-A, Othman A, Meon S, Abdullah F, Ho C-L (2013) Sequence analysis and gene expression of putative oil palm chitinase and chitinase-like proteins in response to colonization of Ganoderma boninense and Trichoderma harzianum. Mol Biol Rep 40:147–158

    Article  CAS  PubMed  Google Scholar 

  • Yun K-Y, Park MR, Mohanty B, Herath V, Xu F, Mauleon R, Wijaya E, Bajic VB, Bruskiewich R, de los Reyes BG (2010) Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol 10:16

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao Y, Thilmony R, Bender CL, Schaller A, He SY, Howe GA (2003) Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J 36:485–499

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Ye Z-H (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. The Plant Cell Online 20:2763–2782

    Article  CAS  Google Scholar 

  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414–420

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Felix G (2005) Plants and animals: a different taste for microbes? Curr Opin Plant Biol 8:353–360

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. Hanafi.

Additional information

Communicated by A. K. Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahebi, M., Hanafi, M.M., Wong, MY. et al. Towards immunity of oil palm against Ganoderma fungus infection. Acta Physiol Plant 37, 195 (2015). https://doi.org/10.1007/s11738-015-1939-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1939-z

Keywords

Navigation