Skip to main content

Advertisement

Log in

A simplified multi-objective particle swarm optimization algorithm

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Particle swarm optimization is a popular nature-inspired metaheuristic algorithm and has been used extensively to solve single- and multi-objective optimization problems over the last two decades. Several local and global search strategies, and learning and parameter adaptation strategies have been included in particle swarm optimization to improve its performance over the years. Most of these approaches are observed to increase the number of user-defined parameters and algorithmic steps resulting in an increased complexity of the algorithm. This paper presents a simplified multi-objective particle swarm optimization algorithm in which the exploitation (guided) and exploration (random) moves are simplified using a detailed qualitative analysis of similar existing operators present in the real-coded elitist non-dominated sorting genetic algorithm and the particle swarm optimization algorithm. The developed algorithm is then tested quantitatively on 30 well-known benchmark problems and compared with a real-coded elitist non-dominated sorting genetic algorithm, and its variant with a simulated binary jumping gene operator and multi-objective non-dominated sorting particle swarm optimization algorithm. In the comparison, the developed algorithm is found to be superior in terms of convergence speed. It is also found to be better with respect to four recent multi-objective particle swarm optimization algorithms and four differential evolution variants in an extended comparative analysis. Finally, it is applied to a newly formulated industrial multi-objective optimization problem of a residue (bottom product from the crude distillation unit) fluid catalytic cracking unit where it shows a better performance than the other compared algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Beheshti, Z., & Shamsuddin, S. M. H. (2014). CAPSO: Centripetal accelerated particle swarm optimization. Information Sciences, 258, 54–79.

    MathSciNet  Google Scholar 

  • Bhaskar, V., Gupta, S. K., & Ray, A. K. (2000). Applications of multiobjective optimization in chemical engineering. Reviews in Chemical Engineering, 16, 1–54.

    Google Scholar 

  • Birattari, M. (2009). Tuning metaheuristics: A machine learning perspective. Berlin: Springer.

    MATH  Google Scholar 

  • Birattari, M., Stutzle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algorithm for configuring metaheuristics. In W. B. Langdon, E. Cantu-Paz, K. Mathias, et al. (Eds.), GECCO 2002: Proceedings of the genetic and evolutionary computation conference (pp. 11–18). San Francisco: Morgan Kaufmann.

  • Chen, X., Du, W., & Qian, F. (2014). Multi-objective differential evolution with ranking-based mutation operator and its application in chemical process optimization. Chemometrics and Intelligent Laboratory Systems, 136, 85–96.

    Google Scholar 

  • Cheng, R., & Jin, Y. (2015). A social learning particle swarm optimization algorithm for scalable optimization. Information Sciences, 291, 43–60.

    MathSciNet  MATH  Google Scholar 

  • Coello-coello, C. A., Lamont, G. B., & van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems. New York: Springer.

    MATH  Google Scholar 

  • Coello-coello, C. A., & Lechuga, M. S. (2002). MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on evolutionary computation part of the 2002 IEEE world congress of computational intelligence (pp. 1051–1056). Hawaii: IEEE.

  • Coello-coello, C. A., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8, 256–279.

    Google Scholar 

  • Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15, 4–31.

    Google Scholar 

  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester: Wiley.

    MATH  Google Scholar 

  • Deb, K., & Agrawal, R. B. (1994). Simulated binary crossover for continuous search space. Complex Systems, 9, 1–34.

    MathSciNet  MATH  Google Scholar 

  • Deb, K., & Agarwal, S. (1999). A niched-penalty approach for constraint handling in genetic algorithms. In Proceedings of the international conference on artificial neural nets and genetic algorithms (pp. 235–243). Portoroz: Springer.

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002a). A fast and elitist multiobjective genetic algorithm: NSGA-II. EEE Transactions on Evolutionary Computation, 6, 182–197.

    Google Scholar 

  • Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. (2002b). Scalable multi-objective optimization test problems. In D. B. Fogel, M. A. El-Sharkawi, X. Yao, et al. (Eds.), Proceedings of the 2002 Congress on Evolutionary Computation (pp. 825–830).

  • Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part B (Cybernetics), 26, 29–41.

    Google Scholar 

  • Durillo, J. J., & Nebro, A. J. (2011). JMetal: A Java framework for multi-objective optimization. Advances in Engineering Software, 42, 760–771.

    Google Scholar 

  • Elhossini, A., Areibi, S., & Dony, R. (2010). Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization. Evolutionary Computation, 18, 127–156.

    Google Scholar 

  • Garcia, S., Molina, D., Lozano, M., & Herrera, F. (2009). A Study on the use of nonparametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization. Journal of Heuristics, 15(6), 617–644.

    MATH  Google Scholar 

  • Grobler, J., & Engelbrecht, A. P. (2009). Hybridizing PSO and DE for improved vector evaluated multi-objective optimization. In Proceedings of the IEEE congress on evolutionary computation, CEC 2009 (pp. 1255–1262). Trondheim: IEEE.

  • Harrison, K. R., Ombuki-Berman, B., & Engelbrecht, A. P. (2013). Knowledge transfer strategies for vector evaluated particle swarm optimization. In R. C. Purshouse, P. J. Fleming, C. M. Fonseca, et al. (Eds.), Evolutionary multi-criterion optimization, EMO 2013 (Vol. 7811, pp. 171–184)., Lecture notes in computer science Berlin: Springer.

    Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Hu, Y.-F., Ding, Y.-S., Ren, L.-H., Hao, K.-R., & Han, H. (2015). An endocrine cooperative particle swarm optimization algorithm for routing recovery problem of wireless sensor networks with multiple mobile sinks. Information Sciences, 300, 100–113.

    Google Scholar 

  • Huband, S., Hingston, P., Barone, L., & While, L. (2006). A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation, 10, 477–506.

    MATH  Google Scholar 

  • Hutter, F., Hoos, H. H., Leyton-Brown, K., & Stutzle, T. (2009). ParamILS: An automatic algorithm configuration framework. Journal of Artificial Intelligence Research, 36, 267–306.

    MATH  Google Scholar 

  • Janson, S., Merkle, D., & Middendorf, M. (2008). Molecular docking with multi-objective particle swarm optimization. Applied Soft Computing, 8, 666–675.

    Google Scholar 

  • Kaveh, A., & Laknejadi, K. (2011). A novel hybrid charge system search and particle swarm optimization method for multi-objective optimization. Expert Systems with Applications, 38, 15475–15488.

    Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of IEEE international conference on neural network IV (pp. 1942–1948). Piscataway: Springer

  • Khoshahval, F., Zolfaghari, A., Minuchehr, H., & Abbasi, M. R. (2014). A new hybrid method for multi-objective fuel management optimization using parallel PSO-SA. Progress in Nuclear Energy, 76, 112–121.

    Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    MathSciNet  MATH  Google Scholar 

  • Leong, W.-F., & Yen, G. G. (2008). PSO-based multiobjective optimization with dynamic population size and adaptive local archives. IEEE Transactions on Systems, Man, and Cybernetics Part B (Cybernetics), 38, 1270–1293.

    Google Scholar 

  • Li, X. (2003). A non-dominated sorting particle swarm optimizer for multiobjective optimization. In Proceedings of the genetic and evolutionary computation conference, GECCO 2003 (pp. 37–48). Chicago: Springer.

  • Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10, 281–295.

    Google Scholar 

  • Liang, J. J., Qu, B.-Y., Suganthan, P. N., & Niu, B. (2012). Dynamic multi-swarm particle swarm optimization for multi-objective optimization problems. In Proceedings of the IEEE Congress on evolutionary computation, CEC 2012 (pp. 1–8). Brisbane: IEEE.

  • Lim, K. S., Buyamin, S., Ahmad, A., Shapiai, M. I., Naim, F., Mubin, M., et al. (2014). Improving vector evaluated particle swarm optimization using multiple nondominated leaders. The Scientific World Journal, 2014, 1–21.

    Google Scholar 

  • Lim, K. S., Ibrahim, Z., Buyamin, S., Ahmad, A., Naim, F., Ghazali, K. H., et al. (2013). Improving vector evaluated particle swarm optimization by incorporating nondominated solutions. The Scientific World Journal, 2013, 1–19.

    Google Scholar 

  • Lim, W. H., & Isa, N. A. M. (2014). Teaching and peer-learning particle swarm optimization. Applied Soft Computing, 18, 39–58.

    Google Scholar 

  • Lin, Q., Li, J., Du, Z., Chen, J., & Ming, Z. (2015). A novel multi-objective particle swarm optimization with multiple search strategies. European Journal of Operational Research, 247, 732–744.

    MathSciNet  MATH  Google Scholar 

  • Liu, D. S., Tan, K. C., Huang, S. Y., Goh, C. K., & Ho, W. K. (2008). On solving multiobjective bin packing problems using evolutionary particle swarm optimization. European Journal of Operational Research, 190, 357–382.

    MathSciNet  MATH  Google Scholar 

  • Luo, J., Qi, Y., Xie, J., & Zhang, X. (2015). A hybrid multi-objective PSO-EDA algorithm for reservoir flood control operation. Applied Soft Computing, 34, 526–538.

    Google Scholar 

  • Meng, A., Chen, Y., Yin, H., & Chen, S. (2014). Crisscross optimization algorithm and its application. Knowledge-Based Systems, 67, 218–229.

    Google Scholar 

  • Mezura-Montes, E., Reyes-Sierra, M., & Coello-coello, C. A. (2008). Multi-objective optimization using differential evolution: A Survey of the state-of-the-art. In U. K. Chakraborty (Ed.), Advances in differential evolution (Vol. 144, pp. 173–196). Berlin: Springer.

    MATH  Google Scholar 

  • Mirjalili, S., & Hashim, S. Z. M. (2010). A new hybrid PSOGSA algorithm for function optimization. In Proceedings of the international conference on computer and information application, ICCIA 2010 (pp. 374–377). Tianjin: IEEE.

  • Moore, J., & Chapman, R. (1999). Application of particle swarm to multiobjective optimization. Technical Report, Department of Computer Science and Software Engineering, Auburn University.

  • Neumuller, C., Wagner, S., Kronberger, G., & Affenzeller, M. (2012). Parameter meta-optimization of metaheuristic optimization algorithms. In R. Moreno-Diaz, F. Pichler, & A. Quesada-Arencibia (Eds.), Computer aided systems theory-EUROCAST 2011 (Vol. 6927, pp. 367–374). Berlin: Springer. Lecture notes in computer science.

    Google Scholar 

  • Parsopoulos, K. E., Tasoulis, D. K., & Vrahatis, M. N. (2004). Multiobjective optimization using parallel vector evaluated particle swarm optimization. In Proceedings of the IASTED international conference on artificial intelligence and applications, as part of the 22nd IASTED international multi-conference on applied informatics (pp. 823–828). Innsbruck: ACTA Press.

  • Peng, G., Fang, Y.-W., Peng, W.-S., Chai, D., & Xu, Y. (2016). Multi-objective particle optimization algorithm based on sharing-learning and dynamic crowding distance. Optik: International Journal for Light and Electron Optics, 127, 5013–5020.

    Google Scholar 

  • Ramesh, S., Kannan, S., & Baskar, S. (2012). Application of modified NSGA-II algorithm to multi-objective reactive power planning. Applied Soft Computing, 12, 741–753.

    Google Scholar 

  • Ramteke, M., Ghune, N., & Trivedi, V. (2015). Simulated binary jumping gene: A step towards enhancing the performance of real-coded genetic algorithm. Information Sciences, 325, 429–454.

    Google Scholar 

  • Rangaiah, G. P. (2009). Multi-objective optimization: Techniques and applications in chemical engineering. Singapore: World Scientific.

    Google Scholar 

  • Rangaiah, G. P., & Petriciolet, A. B. (2013). Multi-objective optimization in chemical engineering: Developments and applications. Oxford: Wiley.

    Google Scholar 

  • Reyes-sierra, M., & Coello-coello, C. A. (2006). Multi-objective particle swarm optimizers: A survey of the state of the art. International Journal of Computational Intelligence Research, 2, 287–308.

    MathSciNet  Google Scholar 

  • Sadeghbeii, R. (2000). Fluid Catalytic Cracking Handbook (2nd ed.). Houston, TX: Gulf Publishing Company.

    Google Scholar 

  • Sengupta, S., Basak, S., & Peters, R. A, I. I. (2019). Particle swarm optimization: A survey of historical and recent developments with hybridization perspective. Machine Learning and Knowledge Extraction, 1, 157–191.

    Google Scholar 

  • Tang, K., Peng, F., Chen, G., & Yao, X. (2014). Population-based algorithm portfolios with automated constituent algorithms selection. Information Sciences, 279, 94–104.

    Google Scholar 

  • Thierens, D., & Goldberg, D. (1994). Elitist recombination: An integrated selection recombination GA. In Proceedings of the first IEEE conference on evolutionary computation, IEEE world congress on computational intelligence (pp. 508–512). Piscataway: IEEE.

  • Tripathi, P. K., Bandyopadhyay, S., & Pal, S. K. (2007). Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Information Sciences, 177, 5033–5049.

    MathSciNet  MATH  Google Scholar 

  • Valadi, J., & Siarry, P. (2014). Applications of metaheuristics in process engineering. New York: Springer.

    MATH  Google Scholar 

  • Varshney, P., Kunzru, D., & Gupta, S. K. (2015). Modelling of the riser reactor in a resid fluidised-bed catalytic cracking unit using a multigrain model for an active matrix-zeolite catalyst. Indian Chemical Engineer, 57, 115–135.

    Google Scholar 

  • Wang, Y., & Yang, Y. (2009). Particle swarm optimization with preference order ranking for multi-objective optimization. Information Sciences, 179, 1944–1959.

    MathSciNet  Google Scholar 

  • Xu, G., Liu, B., Song, J., Xiao, S., & Wu, A. (2019). Multiobjective sorting-based learning particle swarm optimization for continuous optimization. Natural Computing, 18, 313–331.

    MathSciNet  Google Scholar 

  • Xu, G., Yang, Y., Liu, B.-B., Xu, Y., & Wu, A. (2015). An efficient hybrid multi-objective particle swarm optimization with a multi-objective dichotomy line search. Journal of Computational and Applied Mathematics, 280, 310–326.

    MathSciNet  MATH  Google Scholar 

  • Yang, W.-C. (2003). Handbook of fluidization and fluid-particle systems. New York: Marcel Dekker Inc.

    Google Scholar 

  • Yu, K., Wang, X., & Wang, Z. (2016). Multiple learning particle swarm optimization with space transformation perturbation and its application in ethylene cracking furnace optimization. Knowledge-Based Systems, 96, 156–170.

    Google Scholar 

  • Zhang, W.-J., & Xie, X.-F. (2003). DEPSO: Hybrid particle swarm with differential evolution operator. IEEE international conference on systems, man and cybernetics, 2003 (pp. 3816–3821). IEEE: Washington, DC.

  • Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8, 173–195.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial financial support from Science and Engineering Research Board, Government of India, New Delhi (through Grant SB/FTP/ETA-125/2013, dated June 5, 2014). Also, the authors acknowledge the detailed suggestions provided by editor, associate editor, reviewers, Prof. Ali Haider and Mr. Gautam Rangari for improving the technical and the linguistic quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manojkumar Ramteke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 28179 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivedi, V., Varshney, P. & Ramteke, M. A simplified multi-objective particle swarm optimization algorithm. Swarm Intell 14, 83–116 (2020). https://doi.org/10.1007/s11721-019-00170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-019-00170-1

Keywords

Navigation