Modular self-assembling and self-reconfiguring e-pucks

Abstract

In this paper, we present the design of a new structural extension for the e-puck mobile robot. The extension may be used to transform what is traditionally a swarm robotics platform into a self-reconfigurable modular robotic system. We introduce a modified version of a previously developed collective locomotion algorithm and present new experimental results across three different themes. We begin by investigating how the performance of the collective locomotion algorithm is affected by the size and shape of the robotic structures involved, examining structures containing up to nine modules. Without alteration to the underlying algorithm, we then analyse the implicit self-assembling and self-reconfiguring capabilities of the system and show that the novel use of ‘virtual sensors’ can significantly improve performance. Finally, by examining a form of environment driven self-reconfiguration, we observe the behaviour of the system in a more complex environment. We conclude that the modular e-puck extension represents a viable platform for investigating collective locomotion, self-assembly and self-reconfiguration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Notes

  1. 1.

    http://www.swarm-bots.org/.

  2. 2.

    http://www.swarmanoid.org/.

  3. 3.

    http://www.symbrion.eu/.

  4. 4.

    http://www.replicators.eu/.

  5. 5.

    http://www.makerbot.com/support/thingomatic/.

  6. 6.

    For 1A, there is a bias towards the left-hand side of the arena. This is due to the fact that, in this experiment, the heading of the robot was kept the same across all runs.

  7. 7.

    It would be easy to achieve ‘better’ coverage by using fewer squares; however, the purpose of this experiment was to compare the coverage of different configurations, not to measure the overall performance. We therefore deliberately chose a value that was large enough to ensure that no configuration was able to achieve a score of 1.0.

  8. 8.

    http://www.elec.york.ac.uk/research/projects/Modular_e_puck_Extension.html.

References

  1. Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., & Nolfi, S. (2007). Self-organized coordinated motion in groups of physically connected robots. IEEE Transactions on Systems, Man and Cybernetics. Part B. Cybernetics, 37(1), 224–239.

    Article  Google Scholar 

  2. Beni, G. (1988). The concept of cellular robotic system. In Proceedings of the 1988 IEEE international symposium on intelligent control (pp. 57–62). New York: IEEE Press.

    Google Scholar 

  3. Beni, G. (2005). From swarm intelligence to swarm robotics. In E. Şahin & W. Spears (Eds.), LNCS: Vol. 3342. Swarm robotics (pp. 1–9). Berlin: Springer.

    Google Scholar 

  4. Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., & Nguyen, T. (2005). Programmable parts: a demonstration of the grammatical approach to self-organization. In Proceedings of the 2005 IEEE/RSJ international conference on intelligent robots and systems, IROS 2005 (pp. 3684–3691). New York: IEEE Press.

    Google Scholar 

  5. Campo, A., Nouyan, S., Birattari, M., Groß, R., & Dorigo, M. (2006). Negotiation of goal direction for cooperative transport. In LNCS: Vol. 4150. Proceeding of ANTS 2006, 5th international workshop on ant colony optimization and swarm intelligence (pp. 191–202). Berlin: Springer.

    Google Scholar 

  6. Cianci, C. M., Raemy, X., Pugh, J., & Martinoli, A. (2007). Communication in a swarm of miniature robots: the e-puck as an educational tool for swarm robotics. In LNCS: Vol. 4433. Proceedings of the 2nd international conference on swarm robotics, SAB 2006 (pp. 103–115). Berlin: Springer.

    Google Scholar 

  7. Dorigo, M., Tuci, E., Trianni, V., Groß, R., Nouyan, S., Ampatzis, C., Labella, T. H., O’Grady, R., Bonani, M., & Mondada, F. (2006). SWARM-BOT: design and implementation of colonies of self-assembling robots. In G. Y. Yen & D. B. Fogel (Eds.), Computational intelligence: principles and practice (pp. 103–135). New York: IEEE Computational Intelligence Society. Chap. 6.

    Google Scholar 

  8. Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., Birattari, M., Bonan, M., Brambilla, M., Brutschy, A., Burnier, D., Campo, A., Christensen, A. L., Decugnière, A., Caro, G. A. D., Ducatelle, F., Ferrante, E., Förster, A., Gonzales, J. M., Guzzi, V. L., Magnenat S, J., Mathews, N., de Oca MM O’Grady, R., Pinciroli, C., Pini, G., Rétornaz, P., Roberts, J., Sperati, V., Stirling, T., Stranieri, A., Stützle, T., Trianni, V., Tuci, E., Turgut, A. E., & Vaussard, F. (2013, in press). Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robotics and Automation Magazine.

  9. English, S., Gough, J., Johnson, A., Spanton, R., & Sun, J. (2012). Formica. http://warrantyvoidifremoved.com/formica/. Accessed 9 April 2013.

  10. Ferrante, E., Brambilla, M., Birattari, M., & Dorigo, M. (2013). Socially-mediated negotiation for obstacle avoidance in collective transport. In Springer tracts in advanced robotics: Vol. 83. Proceedings of the 10th international symposium on distributed autonomous robotic systems, DARS 2010 (pp. 571–583). Berlin: Springer.

    Google Scholar 

  11. Fukuda, T., & Nakagawa, S. (1988a). Approach to the dynamically reconfigurable robotic system. Journal of Intelligent & Robotic Systems, 1, 55–72.

    Article  Google Scholar 

  12. Fukuda, T., & Nakagawa, S. (1988b). Dynamically reconfigurable robotic system. In Proceedings of the 1988 IEEE international conference on robotics and automation, ICRA 1988 (pp. 1581–1586). New York: IEEE Press.

    Google Scholar 

  13. Fukuda, T., Nakagawa, S., Kawauchi, Y., & Buss, M. (1988). Self organizing robots based on cell structures—CEBOT. In Proceedings of the 1988 IEEE international workshop on intelligent robots (pp. 145–150). New York: IEEE Press.

    Google Scholar 

  14. GCtronic (2012). Elisa 3. http://www.gctronic.com/doc/index.php/Elisa-3. Accessed 9 April 2013.

  15. Gilpin, K., & Rus, D. (2010). Self-disassembling robot pebbles: new results and ideas for self-assembly of 3D structures. In Proceedings of the 2010 IEEE international conference on robotics and automation, ICRA 2010 (pp. 94–99). New York: IEEE Press.

    Google Scholar 

  16. Gilpin, K., Kotay, K., & Rus, D. (2007). Miche: modular shape formation by self-dissasembly. In Proceedings of the 2007 IEEE international conference on robotics and automation, ICRA 2007 (pp. 2241–2247). New York: IEEE Press.

    Google Scholar 

  17. Gilpin, K., Kotay, K., Rus, D., & Vasilescu, I. (2008). Miche: modular shape formation by self-disassembly. The International Journal of Robotics Research, 27, 345–372.

    Article  Google Scholar 

  18. Gilpin, K., Knaian, A., & Rus, D. (2010). Robot pebbles: one centimeter modules for programmable matter through self-disassembly. In Proceedings of the 2010 IEEE international conference on robotics and automation, ICRA 2010 (pp. 2485–2492). New York: IEEE Press.

    Google Scholar 

  19. Goldstein, S., Campbell, J., & Mowry, T. (2005). Programmable matter. Computer, 38(6), 99–101. doi:10.1109/MC.2005.198.

    Article  Google Scholar 

  20. Groß, R., & Dorigo, M. (2008). Self-assembly at the macroscopic scale. Proceedings of the IEEE, 96(9), 1490–1508.

    Article  Google Scholar 

  21. Groß, R., & Dorigo, M. (2009). Towards group transport by swarms of robots. International Journal of Bio-Inspired Computation, 1(1–2), 1–13.

    Article  Google Scholar 

  22. Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2006a). Autonomous self-assembly in swarm-bots. IEEE Transactions on Robotics, 22(6), 1115–1130.

    Article  Google Scholar 

  23. Groß, R., Mondada, F., & Dorigo, M. (2006b). Transport of an object by six pre-attached robots interacting via physical links. In Proceedings of the 2006 IEEE international conference on robotics and automation, ICRA 2006 (pp. 1317–1323). New York: IEEE Press.

    Google Scholar 

  24. Groß, R., Magnenat, S., Küchler, L., Massaras, V., Bonani, M., & Mondada, F. (2011). Towards an autonomous evolution of non-biological physical organisms. In LNCS: Vol. 5777. Proceedings of the 10th European conference on artificial life, ECAL 2009 (pp. 173–180). Berlin: Springer.

    Google Scholar 

  25. Gutiérrez, A., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., & Magdalena, L. (2009a). Open e-puck range & bearing miniaturized board for local communication in swarm robotics. In Proceedings of the 2009 IEEE international conference on robotics and automation, ICRA 2009 (pp. 3111–3116). New York: IEEE Press.

    Google Scholar 

  26. Gutiérrez, A., Tuci, E., & Campo, A. (2009b). Evolution of neuro-controllers for robots alignment using local communication. International Journal of Advanced Robotic Systems, 6(1), 25–34.

    Google Scholar 

  27. Hong, W., Wang, S., & Shui, D. (2011). Reconfigurable robot system based on electromagnetic design. In Proceedings of the 2011 international conference on fluid power and mechatronics, FPM 2011 (pp. 570–575). New York: IEEE Press.

    Google Scholar 

  28. Jørgensen, M., Østergaard, E., & Lund, H. (2004). Modular ATRON: modules for a self-reconfigurable robot. In Proceedings of the 2004 IEEE/RSJ international conference on intelligent robots and systems, IROS 2004 (Vol. 2, pp. 2068–2073). New York: IEEE Press. doi:10.1109/IROS.2004.1389702.

    Google Scholar 

  29. K-Team Corporation (2012). K-team mobile robotics. http://www.k-team.com. Accessed 10 February 2012.

  30. Kernbach, S. (2012). Jasmine swarm robot platform. http://www.swarmrobot.org. Accessed 10 February 2012.

  31. Kernbach, S., Scholz, O., Harada, K., Popesku, S., Liedke, J., Raja, H., Liu, W., Caparrelli, F., Jemai, J., Havlik, J., Meister, E., & Levi, P. (2010). Multi-robot organisms: state of the art. In Proceedings of the 2010 IEEE international conference on robotics and automation, ICRA 2010, Workshop on “Modular robots: state of the art”, Anchorage, Alaska (pp. 1–10).

    Google Scholar 

  32. Liu, W., & Winfield, A. F. (2011). Open-hardware e-puck Linux extension board for experimental swarm robotics research. Microprocessors and Microsystems, 35(1), 60–67. doi:10.1016/j.micpro.2010.08.002.

    Article  Google Scholar 

  33. Liu, W., & Winfield, A. F. T. (2010). Autonomous morphogenesis in self-assembling robots using IR-based sensing and local communications. In LNCS: Vol. 6234. Proceedings of ANTS 2010, 7th international conference on swarm intelligence (pp. 107–118). Berlin: Springer.

    Google Scholar 

  34. Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I. W., Floreano, D., Deneubourg, J. L., Nolfi, S., Gambardella, L. M., & Dorigo, M. (2004). Swarm-bot: a new distributed robotic concept. Autonomous Robots, 17, 193–221.

    Article  Google Scholar 

  35. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., christophe Zufferey, J., Floreano, D., & Martinoli, A. (2009). The e-puck, a robot designed for education in engineering. In Proceedings of the 9th conference on autonomous robot systems and competitions, IPCB: Instituto Politécnico de Castelo Branco (pp. 59–65).

    Google Scholar 

  36. Murata, S., Kurokawa, H., & Kokaji, S. (1994). Self-assembling machine. In Proceedings of the 1994 IEEE international conference on robotics and automation, ICRA 1994 (pp. 441–448). New York: IEEE Press.

    Google Scholar 

  37. Murray, L., Timmis, J., & Tyrrell, A. (2012). Self-reconfigurable modular e-pucks. In LNCS: Vol. 7461. Proceedings of ANTS 2012, 8th international conference on swarm intelligence (pp. 133–144). Berlin: Springer.

    Google Scholar 

  38. O’Grady, R., Christensen, A., & Dorigo, M. (2008). Autonomous reconfiguration in a self-assembling multi-robot system. In M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stützle, & A. Winfield (Eds.), LNCS: Vol. 5217. Proceedings of ANTS 2008, 6th international conference on ant colony optimization and swarm intelligence (pp. 259–266). Berlin: Springer.

    Google Scholar 

  39. O’Grady, R., Christensen, A., & Dorigo, M. (2009). SWARMORPH: multirobot morphogenesis using directional self-assembly. IEEE Transactions on Robotics, 25(3), 738–743.

    Article  Google Scholar 

  40. Oung, R., & D’Andrea, R. (2011). The distributed flight array. Mechatronics, 21(6), 908–917. doi:10.1016/j.mechatronics.2010.08.003.

    Article  Google Scholar 

  41. Pamecha, A., Chiang, C. J., Stein, D., & Chirikjian, G. (1996). Design and implementation of metamorphic robots. In ASME design engineering technical conference and computers in engineering conference, ASME, Irvine, California.

    Google Scholar 

  42. Pololu Corporation (2012). Pololu robotics & electronics. http://www.pololu.com. Accessed 10 February 2012.

  43. Rubenstein, M., Hoff, N., & Nagpal, R. (2011). Kilobot: a low cost scalable robot system for collective behaviors (Tech. rep. TR-06-11). Harvard University. ftp://ftp.deas.harvard.edu/techreports/tr-06-11.pdf. Accessed 11 February 2012.

  44. Ryland, G., & Cheng, H. (2010). Design of iMobot, an intelligent reconfigurable mobile robot with novel locomotion. In Proceedings of the 2010 IEEE international conference on robotics and automation, ICRA 2010 (pp. 60–65). New York: IEEE Press.

    Google Scholar 

  45. Şahin, E. (2005). Swarm robotics: from sources of inspiration to domains of application. In LNCS: Vol. 3342. Proceedings of the 2004 international conference on swarm robotics, SAB 2004 (pp. 10–20). Berlin: Springer.

    Google Scholar 

  46. Schweikardt, E. (2011). Modular robotics studio. In Proceedings of the 5th international conference on tangible, embedded, and embodied interaction (pp. 353–356). New York: ACM.

    Google Scholar 

  47. Suh, J., Homans, S., & Yim, M. (2002). Telecubes: mechanical design of a module for self-reconfigurable robotics. In Proceedings of the 2002 IEEE international conference on robotics and automation, ICRA 2002 (pp. 4095–4101). New York: IEEE Press.

    Google Scholar 

  48. Trianni, V., Tuci, E., & Dorigo, M. (2004). Evolving functional self-assembling in a swarm of autonomous robots. In From animals to animats 8: proceedings of the 8th international conference on the simulation of adaptive behavior (pp. 405–414). Cambridge: MIT Press.

    Google Scholar 

  49. Trianni, V., Nolfi, S., & Dorigo, M. (2006). Cooperative hole avoidance in a swarm-bot. Robotics and Autonomous Systems, 54(2), 97–103.

    Article  Google Scholar 

  50. Weel, B., Hoogendoorn, M., & Eiben, A. (2012). On-line evolution of controllers for aggregating swarm robots in changing environments. In C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, & M. Pavone (Eds.), LNCS: Vol. 7492. Proceedings of the 12th international conference on parallel problem solving from nature, PPSN XII (pp. 245–254). Berlin: Springer.

    Google Scholar 

  51. Wei, H., Chen, Y., Tan, J., & Wang, T. (2011). Sambot: a self-assembly modular robot system. IEEE/ASME Transactions on Mechatronics, 16(4), 745–757.

    Article  Google Scholar 

  52. Yim, M., Shen, W. M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., & Chirikjian, G. (2007). Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robotics & Automation Magazine, 14(1), 43–52.

    Article  Google Scholar 

  53. Yim, M., White, P., Park, M., & Sastra, J. (2009). Modular self-reconfigurable robots. In R. A. Meyers (Ed.), Encyclopedia of complexity and systems science (pp. 5618–5631). Berlin: Springer.

    Google Scholar 

  54. Zykov, V., Chan, A., & Lipson, H. (2007). Molecubes: an open-source modular robotics kit. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, IROS 2007, Workshop on self-reconfigurable robotics & systems and applications.

    Google Scholar 

Download references

Acknowledgements

This research is supported by the SYMBRION project, within the Seventh Framework Programme (FP7). Project no. FP7-ICT-2007.8.2, grant agreement 216342. Jon Timmis is partially supported by the Royal Society. The authors would like to thank the reviewers for their detailed and comprehensive comments, which greatly helped to improve the quality of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jon Timmis.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Environment Driven Self-reconfiguration (MP4 33.1 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Murray, L., Timmis, J. & Tyrrell, A. Modular self-assembling and self-reconfiguring e-pucks. Swarm Intell 7, 83–113 (2013). https://doi.org/10.1007/s11721-013-0082-y

Download citation

Keywords

  • Self-reconfigurable modular robotics
  • Swarm robotics
  • e-puck
  • Collective locomotion
  • Self-reconfiguration
  • Self-assembly