Application of consistent geometric decomposition theorem to dynamic finite element of 3D composite beam based on experimental and numerical analyses

Abstract

Analyzing static and dynamic problems including composite structures has been of high significance in research efforts and industrial applications. In this article, equivalent single layer approach is utilized for dynamic finite element procedures of 3D composite beam as the building block of numerous composite structures. In this model, both displacement and strain fields are decomposed into cross-sectional and longitudinal components, called consistent geometric decomposition theorem. Then, the model is discretized using finite element procedures. Two local coordinate systems and a global one are defined to decouple mechanical degrees of freedom. Furthermore, from the viewpoint of consistent geometric decomposition theorem, the transformation and element mass matrices for those systems are introduced here for the first time. The same decomposition idea can be used for developing element stiffness matrix. Finally, comprehensive validations are conducted for the theory against experimental and numerical results in two case studies and for various conditions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Madeira J F A, Araújo A L, Mota Soares C M, Mota Soares C A. Multiobjective optimization for vibration reduction in composite plate structures using constrained layer damping. Computers & Structures, 2017: 105810

  2. 2.

    Nie J, Wang J, Gou S, Zhu Y, Fan J. Technological development and engineering applications of novel steel-concrete composite structures. Frontiers of Structural and Civil Engineering, 2019, 13(1): 1–4

    Article  Google Scholar 

  3. 3.

    Budarapu P R, Sudhir Sastry Y B, Natarajan R. Design concepts of an aircraft wing: Composite and morphing airfoil with auxetic structures. Frontiers of Structural and Civil Engineering, 2016, 10(4): 394–408

    Article  Google Scholar 

  4. 4.

    Sakata S, Okuda K, Ikeda K. Stochastic analysis of laminated composite plate considering stochastic homogenization problem. Frontiers of Structural and Civil Engineering, 2015, 9(2): 141–153

    Article  Google Scholar 

  5. 5.

    Asadi H, Kiani Y, Aghdam M M, Shakeri M. Enhanced thermal buckling of laminated composite cylindrical shells with shape memory alloy. Journal of Composite Materials, 2016, 50(2): 243–256

    Article  Google Scholar 

  6. 6.

    Vo-Duy T, Ho-Huu V, Nguyen-Thoi T. Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method. Frontiers of Structural and Civil Engineering, 2018, 13(2): 324–336

    Article  Google Scholar 

  7. 7.

    Fattahi I, Mirdamadi H R. A novel 3D skeletal frame topology for energy harvesting systems. Microelectronics Journal, 2019, 83: 6–17

    Article  Google Scholar 

  8. 8.

    Rahmati M, Mirdamadi H R, Goli S. Divergence instability of pipes conveying fluid with uncertain flow velocity. Physica A, 2018, 491: 650–665

    MathSciNet  Article  Google Scholar 

  9. 9.

    Fattahi I, Mirdamadi H R. Novel composite finite element model for piezoelectric energy harvesters based on 3D beam kinematics. Composite Structures, 2017, 179: 161–171

    Article  Google Scholar 

  10. 10.

    Fattahi I, Mirdamadi H R. A novel multimodal and multidirectional energy harvester by asymmetric 3D skeletal frame structures. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(6): 274

    Article  Google Scholar 

  11. 11.

    Naeeni IP, Keshavarzi A, Fattahi I. Parametric study on the geometric and kinetic aspects of the slider-crank mechanism. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2019, 43(3): 405–417

    Article  Google Scholar 

  12. 12.

    Fattahi I, Mirdamadi H R. Electro-vibration modeling and response of 3D skeletal frame configuration for energy harvesters. Extreme Mechanics Letters, 2020: 100646

  13. 13.

    Rabczuk T, Ren H, Zhuang X. A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Computers, Materials & Continua, 2019, 59(1): 31–55

    Article  Google Scholar 

  14. 14.

    Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 2019, 59(1): 345–359

    Article  Google Scholar 

  15. 15.

    Guo H, Zhuang X, Rabczuk T. A deep collocation method for the bending analysis of Kirchhoff plate. Computers Materials & Continua., 2019, 59(2): 433–456

    Article  Google Scholar 

  16. 16.

    Hamdia K M, Ghasemi H, Zhuang X, Alajlan N, Rabczuk T. Sensitivity and uncertainty analysis for flexoelectric nanostructures. Computer Methods in Applied Mechanics and Engineering, 2018, 337: 95–109

    MathSciNet  Article  Google Scholar 

  17. 17.

    Ghasemi H, Park H S, Rabczuk T. A multi-material level set-based topology optimization of flexoelectric composites. Computer Methods in Applied Mechanics and Engineering, 2018, 332: 47–62

    MathSciNet  Article  Google Scholar 

  18. 18.

    Ghasemi H, Park H S, Rabczuk T. A level-set based IGA formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258

    MathSciNet  Article  Google Scholar 

  19. 19.

    Nanthakumar S S, Lahmer T, Zhuang X, Zi G, Rabczuk T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 24(1): 153–176

    MathSciNet  Article  Google Scholar 

  20. 20.

    Grundberg S, Girhammar U A. A comparison of exact and approximate analyses of partially interacting composite beam-columns. In: The Fifteenth International Conference on Civil, Structural and Environmental Engineering Computing. Civil-Comp Press, 2015

  21. 21.

    Wang Q, Shi D, Liang Q. Free vibration analysis of axially loaded laminated composite beams with general boundary conditions by using a modified Fourier-Ritz approach. Journal of Composite Materials, 2016, 50(15): 2111–2135

    Article  Google Scholar 

  22. 22.

    Wenzel C, Vidal P, D’Ottavio M, Polit O. Coupling of heterogeneous kinematics and Finite Element approximations applied to composite beam structures. Composite Structures, 2014, 116: 177–192

    Article  Google Scholar 

  23. 23.

    Polit O, Gallimard L, Vidal P, D’Ottavio M, Giunta G, Belouettar S. An analysis of composite beams by means of hierarchical finite elements and a variables separation method. Computers & Structures, 2015, 158: 15–29

    Article  Google Scholar 

  24. 24.

    Karami M A, Inman D J. Analytical modeling and experimental verification of the vibrations of the zigzag micro structure for energy harvesting. Journal of Vibration and Acoustics, 2011, 133(1): 011002

    Article  Google Scholar 

  25. 25.

    Ananda Babu A, Edwin Sudhagar P, Rajamohan V. Dynamic characterization of thickness tapered laminated composite plates. Journal of Vibration and Control, 2016, 22(16): 3555–3575

    MathSciNet  Article  Google Scholar 

  26. 26.

    Milazzo A. Refined equivalent single layer formulations and finite elements for smart laminates free vibrations. Composites. Part B, Engineering, 2014, 61: 238–253

    Article  Google Scholar 

  27. 27.

    Panda S, Kumar A. A design of active constrained layer damping treatment for vibration control of circular cylindrical shell structure. Journal of Vibration and Control, 2016, 24: 1077546316670071

    MathSciNet  Google Scholar 

  28. 28.

    Tornabene F. General higher-order layer-wise theory for free vibrations of doubly-curved laminated composite shells and panels. Mechanics of Advanced Materials and Structures, 2016, 23(9): 1046–1067

    MathSciNet  Article  Google Scholar 

  29. 29.

    Reddy J N. Mechanics of Laminated Composite Plates: Theory and Analysis. CRC press, 1997

  30. 30.

    Weaver J R, Johnston P R. Structural Dynamics by Finite Elements. Englewood Cliffs, NJ: Prentice-Hall, 1987

    Google Scholar 

  31. 31.

    Petyt M. Introduction to Finite Element Vibration Analysis. Cambridge University Press, 2010

  32. 32.

    Iannacci J, Sordo G. Up-scaled macro-device implementation of a MEMS wideband vibration piezoelectric energy harvester design concept. Microsystem Technologies, 2016, 22(7): 1639–1651

    Article  Google Scholar 

  33. 33.

    Muthalif A G, Nordin N D. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results. Mechanical Systems and Signal Processing, 2015, 54–55: 417–426

    Article  Google Scholar 

  34. 34.

    Leo D J. Engineering Analysis of Smart Material Systems. Hoboken, NJ: John Wiley & Sons, 2007

    Google Scholar 

  35. 35.

    Erturk A, Inman D J. Piezoelectric Energy Harvesting. John Wiley & Sons, 2011

  36. 36.

    Cook R D. Concepts and Applications of Finite Element Analysis. John Wiley & Sons, 2007

  37. 37.

    Zhang Y, Zhuang X. Cracking elements method for dynamic brittle fracture. Theoretical and Applied Fracture Mechanics, 2019, 102: 1–9

    Article  Google Scholar 

  38. 38.

    Zhang Y, Zhuang X. Cracking elements: A self-propagating strong discontinuity embedded approach for quasi-brittle fracture. Finite Elements in Analysis and Design, 2018, 144: 84–100

    MathSciNet  Article  Google Scholar 

  39. 39.

    Zhuang X, Wang Q, Zhu H. Multiscale modelling of hydromechanical couplings in quasi-brittle materials. International Journal of Fracture, 2017, 204(1): 1–27

    Article  Google Scholar 

  40. 40.

    Ren H L, Zhuang X Y, Anitescu C, Rabczuk T. An explicit phase field method for brittle dynamic fracture. Computers & Structures, 2019, 217: 45–56

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Mirdamadi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fattahi, I., Mirdamadi, H.R. & Abdollahi, H. Application of consistent geometric decomposition theorem to dynamic finite element of 3D composite beam based on experimental and numerical analyses. Front. Struct. Civ. Eng. (2020). https://doi.org/10.1007/s11709-020-0625-4

Download citation

Keywords

  • composite beam
  • dynamic finite element
  • degrees of freedom coupling
  • experimental validation
  • numerical validation