Skip to main content
Log in

Predication of discharge coefficient of cylindrical weir-gate using adaptive neuro fuzzy inference systems (ANFIS)

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

Settlement of sediments behind weirs and accumulation of materials floating on water behind gates decreases the performance of these structures. Weir-gate is a combination of weir and gate structures which solves them Infirmities. Proposing a circular shape for crest of weirs to improve their performance, investigators have proposed cylindrical shape to improve the performance of weir-gate structure and call it cylindrical weir-gate. In this research, discharge coefficient of weir-gate was predicated using adaptive neuro fuzzy inference systems (ANFIS). To compare the performance of ANFIS with other types of soft computing techniques, multilayer perceptron neural network (MLP) was prepared as well. Results of MLP and ANFIS showed that both models have high ability for modeling and predicting discharge coefficient; however, ANFIS is a bit more accurate. The sensitivity analysis of MLP and ANFIS showed that Froude number of flow at upstream of weir and ratio of gate opening height to the diameter of weir are the most effective parameters on discharge coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dehdar-behbahani S, Parsaie A. Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: Balaroud dam, Iran. Alexandria Engineering Journal, 2016, 55(1): 467–473

    Google Scholar 

  2. Parsaie A, Haghiabi A H, Moradinejad A. CFD modeling of flow pattern in spillway’s approach channel. Sustainable Water Resources Management, 2015, 1(3): 245–251

    Google Scholar 

  3. Budarapu P R, Gracie R, Yang S W, Zhuang X, Rabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143

    Google Scholar 

  4. Budarapu P R, Yb S S, Javvaji B, Mahapatra D R. Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Frontiers of Structural and Civil Engineering, 2014, 8(2): 151–159

    Google Scholar 

  5. Budarapu P R, Javvaji B, Sutrakar V K, Roy Mahapatra D, Zi G, Rabczuk T. Crack propagation in graphene. Journal of Applied Physics, 2015, 118(6): 064307

    Google Scholar 

  6. Budarapu P R, Narayana T S S, Rammohan B, Rabczuk T. Directionality of sound radiation from rectangular panels. Applied Acoustics, 2015, 89: 128–140

    Google Scholar 

  7. Parsaie A, Haghiabi A. The effect of predicting discharge coefficient by neural network on increasing the numerical modeling accuracy of flow over side weir. Water Resources Management, 2015, 29(4): 973–985

    Google Scholar 

  8. Parsaie A, Haghiabi A H. Computational modeling of pollution transmission in rivers. Applied Water Science, 2015, 89: 1–10

    Google Scholar 

  9. Parsaie A, Haghiabi A H. Predicting the longitudinal dispersion coefficient by radial basis function neural network. Modeling Earth Systems and Environment, 2015, 1(4): 1–8

    Google Scholar 

  10. Sudhir Sastry Y B, Budarapu P R, Krishna Y, Devaraj S. Studies on ballistic impact of the composite panels. Theoretical and Applied Fracture Mechanics, 2014, 72: 2–12

    Google Scholar 

  11. SudhirSastry Y B, Budarapu P R, Madhavi N, Krishna Y. Buckling analysis of thin wall stiffened composite panels.” Computational Materials Science, 2015, 96(B): 459–471

    Google Scholar 

  12. Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. A computational library for multiscale modeling of material failure. Computational Mechanics, 2013, 53(5): 1047–1071

    MathSciNet  Google Scholar 

  13. Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fractures. 2013, 11(6): 527–541

    Google Scholar 

  14. Yang S W, Budarapu, P R, Mahapatra, D R, Bordas S P A, Zi G, Rabczuk T. A meshless adaptive multiscale method for fracture. Computational Materials Science, 2015, (B): 382–395

    Google Scholar 

  15. Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109

    Google Scholar 

  16. Azamathulla H M, Haghiabi A H, Parsaie A. Prediction of side weir discharge coefficient by support vector machine technique. Water Science and Technology: Water Supply, 2016

    Google Scholar 

  17. Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wüchner R, Bletzinger K U, Bazilevs Y, Rabczuk T. Rotation free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47–48): 3410–3424

    MathSciNet  MATH  Google Scholar 

  18. Parsaie A. Analyzing the distribution of momentum and energy coefficients in compound open channel. Modeling Earth Systems and Environment, 2016, 2(1): 1–5

    Google Scholar 

  19. Rabczuk T, Areias P M A, Belytschko T. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548

    MathSciNet  MATH  Google Scholar 

  20. Israelsen O W, Hansen V E. Irrigation Principles and Practices, Wiley, 1962

    Google Scholar 

  21. Negm A, El-Saiad A, Alhamid A, Husain D. Characteristics of simultaneous flow over weir and below inverted V-Notches Civil Engineering Research Magazine (CERM). Civil Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt, 1994, 16(9): 786–799

    Google Scholar 

  22. Negm A, El-Saiad A, Saleh O. Characteristics of combined flow over weirs and below submerged gates. In: Proceedings of the Al-Mansoura Eng. 2nd Int. Conf. (MEIC’97). 1997, 1–3

    Google Scholar 

  23. Ferro V. Simultaneous flow over and under a gate. Journal of Irrigation and Drainage Engineering, 2000, 126(3): 190–193

    Google Scholar 

  24. Negm A A M, Al-Brahim A M, Alhamid A A. Combined-free flow over weirs and below gates. Journal of Hydraulic Research, 2002, 40(3): 359–365

    Google Scholar 

  25. Bagheri S, Heidarpour M. Overflow characteristics of circularcrested weirs. Journal of Hydraulic Research, 2010, 48(4): 515–520

    Google Scholar 

  26. Chanson H, Montes J S. Overflow characteristics of circular weirs: effects of inflow conditions. Journal of Irrigation and Drainage Engineering, 1998, 124(3): 152–162

    Google Scholar 

  27. Schmocker L, Halldórsdóttir B R, Hager W H. Effect of weir face angles on circular-crested weir flow. Journal of Hydraulic Engineering, 2011, 137(6): 637–643

    Google Scholar 

  28. Haghiabi A H. Hydraulic characteristics of circular crested weir based on Dressler theory. Biosystems Engineering, 2012, 112(4): 328–334

    Google Scholar 

  29. Kabiri-Samani A, Bagheri S. Discharge coefficient of circularcrested weirs based on a combination of flow around a cylinder and circulation. Journal of Irrigation and Drainage Engineering, 2014, 140(5): 04014010

    Google Scholar 

  30. Mohammadzadeh-Habili J, Heidarpour M, Afzalimehr H. Hydraulic characteristics of a new weir entitled of quarter-circular crested weir. Flow Measurement and Instrumentation, 2013, 33(0): 168–178

    Google Scholar 

  31. Severi A, Masoudian M, Kordi E, Roettcher K. Discharge coefficient of combined-free over-under flow on a cylindrical weir-gate. ISH Journal of Hydraulic Engineering, 2015, 21(1): 42–52

    Google Scholar 

  32. Azamathulla H, Ghani A. Genetic programming for predicting longitudinal dispersion coefficients in streams. Water Resources Management, 2011, 25(6): 1537–1544

    Google Scholar 

  33. Cai Y, Zhu H, Zhuang X. A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling. Frontiers of Structural and Civil Engineering, 2013, 7(4): 369–378

    Google Scholar 

  34. Najafzadeh M, Azamathulla H M. Neuro-fuzzy GMDH to predict the scour pile groups due to waves. Journal of Computing in Civil Engineering, 2015, 29(5): 04014068

    Google Scholar 

  35. Najafzadeh M, Etemad-Shahidi A, Lim S Y. Scour prediction in long contractions using ANFIS and SVM. Ocean Engineering, 2016, 111: 128–135

    Google Scholar 

  36. Najafzadeh M, Sattar A A. Neuro-fuzzy GMDH approach to predict longitudinal dispersion in water networks. Water Resources Management, 2015, 29(7): 2205–2219

    Google Scholar 

  37. Najafzadeh M, Tafarojnoruz A. Evaluation of neuro-fuzzy GMDHbased particle swarm optimization to predict longitudinal dispersion coefficient in rivers. Environmental Earth Sciences, 2016, 75(2): 1–12

    Google Scholar 

  38. Parsaie A, Haghiabi A. Predicting the side weir discharge coefficient using the optimized neural network by genetic algorithm. Scientific Journal of Pure and Applied Sciences, 2014, 3(3): 103–112

    Google Scholar 

  39. Parsaie A, Yonesi H A, Najafian S. Predictive modeling of discharge in compound open channel by support vector machine technique. Modeling Earth Systems and Environment, 2015, 1(1–2): 1–6

    Google Scholar 

  40. Zhuang X, Augarde C E, Mathisen K M. Fracture modeling using meshless methods and level sets in 3D: Framework and modeling. International Journal for Numerical Methods in Engineering, 2012, 92(11): 969–998

    MathSciNet  MATH  Google Scholar 

  41. Zhuang X Y, Huang R Q, Zhu H H, Askes H, Mathisen K. A new and simple locking-free triangular thick plate element using independent shear degrees of freedom. Finite Elements in Analysis and Design, 2013, 75: 1–7

    MATH  Google Scholar 

  42. Juma I A, Hussein H H, Al-Sarraj M F. Analysis of hydraulic characteristics for hollow semi-circular weirs using artificial neural networks. Flow Measurement and Instrumentation, 2014, 38: 49–53

    Google Scholar 

  43. Vu-Bac N, Lahmer T, Keitel H, Zhao J, Zhuang X, Rabczuk T. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68: 70–84

    Google Scholar 

  44. Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95

    Google Scholar 

  45. Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464

    Google Scholar 

  46. Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96(B): 520–535

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Parsaie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsaie, A., Haghiabi, A.H., Saneie, M. et al. Predication of discharge coefficient of cylindrical weir-gate using adaptive neuro fuzzy inference systems (ANFIS). Front. Struct. Civ. Eng. 11, 111–122 (2017). https://doi.org/10.1007/s11709-016-0354-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-016-0354-x

Keywords

Navigation