Skip to main content
Log in

Influence of fluid-structure interaction on vortex induced vibration and lock-in phenomena in long span bridges

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

In this paper, deck models of a cable stayed bridge are generated in ABAQUS-finite element program once using only CFD model (one-way fluid-structure interaction) and another by using both the CFD model and the CSD model together (two-way fluid-structure interaction) in a co-simulation. Shedding frequencies for the associated wind velocities in the lock-in region are calculated in both approaches. The results are validated with Simiu and Scanlan results. The lift and drag coefficients are determined for the two approaches and the latter results are validated with the flat plate theory results by Munson and coauthors. A decrease in the critical wind velocity and the shedding frequencies considering two-way approach was determined compared to those obtained in the one-way approach. The results of the lift and drag forces in the two-way approach showed appreciable decrease in their values. It was concluded that the two-way approach predicts earlier vortex induced vibration for lower critical wind velocities and lock-in phenomena will appear at lower natural frequencies of the long span bridges. This helps the designers to efficiently plan and consider for the design and safety of the long span bridge against this type of vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Budarapu P R, Narayana T S S, Rammohan B, Rabczuk T. Directionality of sound radiation from rectangular panels. Applied Acoustics, 2015, 89: 128–140

    Article  Google Scholar 

  2. Yang S W, Budarapu P R, Mahapatra D R, Bordas S, Zi G, Rabczuk T. A meshless adaptive multiscale method for fracture. Computational Materials Science, 2015, 96B: 382–395

    Article  Google Scholar 

  3. Budarapu P R, Gracie R, Yang S W, Zhuang X, Rabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143

    Article  Google Scholar 

  4. Budarapu P R, Gracie R, Bordas S, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148

    Article  MATH  Google Scholar 

  5. Talebi H, Silani M, Bordas S, Kerfriden P, Rabczuk T. A computational library for multiscale modelling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071

    Article  MathSciNet  MATH  Google Scholar 

  6. Talebi H, Silani M, Bordas S, Kerfriden P, Rabczuk T. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering, 2013, 11(6): 527–541

    Article  Google Scholar 

  7. Amiri F, Milan D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109

    Article  Google Scholar 

  8. Zhuang X, Huang R, Zhu H, Askes H, Mathisen K. A new and simple locking-free triangular thick plate element using independent shear degrees of freedom. Finite Elements in Analysis and Design, 2013, 75: 1–7

    Article  MATH  Google Scholar 

  9. Zhuang X, Augarde C, Mathisen K. Fracture modelling using meshless methods and level sets in 3D: framework and modelling. International Journal for Numerical Methods in Engineering, 2012, 92(11): 969–998

    Article  MathSciNet  MATH  Google Scholar 

  10. Cai Y, Zhu H, Zhuang X. A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modelling. Frontiers of Structural & Civil Engineering, 2014, 7(4): 369–378

    Article  Google Scholar 

  11. Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343

    Article  MATH  Google Scholar 

  12. Rabczuk T, Belytschko T, Xiao S P. Stable particle methods based on Lagrangian kernels. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12-14): 1035–1063

    Article  MathSciNet  MATH  Google Scholar 

  13. Rabczuk T, Akkermann J, Eibl J. A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5-6): 1327–1354

    Article  MATH  Google Scholar 

  14. Rabczuk T, Eibl J. Numerical analysis of prestressed concrete beams using a coupled element free Galerkin/nite element method. International Journal of Solids and Structures, 2004, 41(3-4): 1061–1080

    Article  MATH  Google Scholar 

  15. Rabczuk T, Belytschko T. Adaptivity for structured meshfree particle methods in 2D and 3D. International Journal for Numerical Methods in Engineering, 2005, 63(11): 1559–1582

    Article  MathSciNet  MATH  Google Scholar 

  16. Zi G, Rabczuk T, Wall WA. Extended meshfree methods without branch enrichment for cohesive cracks. Computational Mechanics, 2007, 40(2): 367–382

    Article  MATH  Google Scholar 

  17. Rabczuk T, Belytschko T. Application of particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1-4): 19–49

    Article  MATH  Google Scholar 

  18. Rabczuk T, Bordas S, Zi G. A three-dimensional meshfree method for continuous multiple crack initiation, nucleation and propagation in statics and dynamics. Computational Mechanics, 2007, 40 (3): 473–495

    Article  MATH  Google Scholar 

  19. Bordas S, Rabczuk T. Zi. G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by extrinsic discontinuous enrichment of meshfree methods without asymptotic enrichment. Engineering Fracture Mechanics, 2008, 75 (5): 943–960

    Article  Google Scholar 

  20. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A geometrically nonlinear three dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75 (16): 4740–4758

    Article  Google Scholar 

  21. Rabczuk T, Bordas S, Zi G. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23-24): 1391–1411

    Article  Google Scholar 

  22. Onate E, Garcia J. A Finite Element Method for Fluid-Structure Interaction with Surface Waves Using A Finite Calculus Formulation. International Centre for Numerical Methods in Engineering. Universidad Politecnica de Cataluna, 2001, PI208: 1–34

    MATH  Google Scholar 

  23. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37-40): 2437–2455

    Article  MATH  Google Scholar 

  24. Nguyen-Thanh N, Valizadeh N, Nguyen M N, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T. An extended isogeometric thin shell analysis based on Kirchho-Love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291

    Article  MathSciNet  Google Scholar 

  25. Areias P, Rabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotation. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122

    Article  MathSciNet  MATH  Google Scholar 

  26. Chau-Dinh T, Zi G, Lee P S, Song J H, Rabczuk T. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92–93: 242–256

    Article  Google Scholar 

  27. Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wuchner R, Bletzinger K U, Bazilevs Y, Rabczuk T. Rotation free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47-48): 3410–3424

    Article  MathSciNet  MATH  Google Scholar 

  28. Nguyen-Thanh N, Rabczuk T, Nguyen-Xuan H, Bordas S. A smoothed finite element method for shell analysis. Computer Methods in Applied Mechanics and Engineering, 2008, 198(2): 165–177

    Article  MATH  Google Scholar 

  29. Thai H C, Nguyen-Xuan H, Bordas S, Nguyen-Thanh N, Rabczuk T. Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory. Mechanics of Advanced Materials and Structures, 2015, 22(6): 451–469

    Article  Google Scholar 

  30. Thai C H, Ferreira A J M, Bordas S, Rabczuk T, Nguyen-Xuan H. Isogeometric analysis of laminated composite and sandwich plates using a new inversetrigonometric shear deformation theory. European Journal of Mechanics. A, Solids, 2014, 43: 89–108

    Article  MATH  Google Scholar 

  31. Phan-Dao H, Nguyen-Xuan H, Thai-Hoang C, Nguyen-Thoi T, Rabczuk T. An edge-based smoothed finite element method for analysis of laminated composite plates. International Journal of Computational Methods, 2013, 10(1): 1340005

    Article  MathSciNet  MATH  Google Scholar 

  32. Valizadeh N, Natarajan S, Gonzalez-Estrada O A, Rabczuk T. Tinh Quoc Bui, Bordas S.P.A.: NURBS-based nite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Composite Structures, 2013, 99: 309–326

    Article  Google Scholar 

  33. Thai C H, Nguyen-Xuan H, Nguyen-Thanh N, Le T H, Nguyen-Thoi T, Rabczuk T. Static, free vibration and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach. International Journal for Numerical Methods in Engineering, 2012, 91(6): 571–603

    Article  MathSciNet  MATH  Google Scholar 

  34. Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie J F. A smoothed finite element method for plate analysis. Computer Methods in Applied Mechanics and Engineering, 2008, 197(13–16): 1184–1203

    Article  MATH  Google Scholar 

  35. Rabczuk T, Zi G. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39 (6): 743–760

    Article  MATH  Google Scholar 

  36. Areias P, Msekh M A, Rabczuk T. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143

    Article  Google Scholar 

  37. Areias P, Rabczuk T, Camanho P P. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63

    Article  Google Scholar 

  38. Areias P, Rabczuk T, Dias-da- Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137

    Article  Google Scholar 

  39. Areias P, Rabczuk T, Camanho P P. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics, 2013, 52(4): 931–947

    Article  MATH  Google Scholar 

  40. Ghorashi S, Valizadeh N, Mohammadi S, Rabczuk T. T-spline based XIGA for fracture analysis of orthotropic Media. Computers & Structures, 2015, 147: 138–146

    Article  Google Scholar 

  41. Nguyen-Thanh N, Valizadeh N, Nguyen M N, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T. An extended isogeometric thin shell analysis based on Kirchhoff-Love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291

    Article  MathSciNet  Google Scholar 

  42. Ghasemi H, Brighenti R, Zhuang X, Muthu J, Rabczuk T. Optimum fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach. Structural and Multidisciplinary Optimization, 2015, 51 (1): 99–112

    Article  MathSciNet  Google Scholar 

  43. Amiri F, Anitescu C, Arroyo M, Bordas S, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57

    Article  MathSciNet  MATH  Google Scholar 

  44. Nanthakumar S, Lahmer T, Zhuang X, Zi G, Rabczuk T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 24(1): 153–176

    Article  MathSciNet  Google Scholar 

  45. Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31

    Article  Google Scholar 

  46. Nguyen B H, Tran H D, Anitescu C, Zhuang X, Rabczuk T. An isogeometric symmetric galerkin boundary element method for elastostatic analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 252–275

    Article  MathSciNet  Google Scholar 

  47. Quoc T T, Rabczuk T, Meschke G, Bazilevs Y. A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 584–604

    Article  MathSciNet  Google Scholar 

  48. Nguyen V P, Anitescu C, Bordas S, Rabczuk T. Isogeometric analysis: An overview and computer implementation aspects. Mathematics and Computers in Simulations, 2015, 117, 4190: 89–116

    Article  MathSciNet  Google Scholar 

  49. Valizadeh N, Bazilevs Y, Chen J S, Rabczuk T. A coupled IGAmeshfree discretization of arbitrary order of accuracy and without global geometry parameterization. Computer Methods in Applied Mechanics and Engineering, 2015, 293: 20–37

    Article  MathSciNet  Google Scholar 

  50. Anitescu C, Jia Y, Zhang Y, Rabczuk T. An isogeometric collocation method using superconvergent points. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 1073–1097

    Article  MathSciNet  Google Scholar 

  51. Talebi H, Silani M, Rabczuk T. Concurrent multiscale modelling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92

    Article  Google Scholar 

  52. Santiago B, Ramon C. On some fluid structure iterative algorithms using pressure segregation methods, application to aeroelasticity. International Journal for Numerical Methods in Engineering, 2007, 72(1): 46–71

    Article  MathSciNet  MATH  Google Scholar 

  53. Frandsen J B. Numerical bridge deck studies using finite elements Part I: flutter. Journal of Fluids and Structures, 2004, 19(2): 171–191

    Article  Google Scholar 

  54. Vazquez J G V. Nonlinear Analysis of Orthotropic Membrane and Shell Structures Including Fluid-Structure Interaction. Ph D dissertation, Barcelona: Department of resistance of materials and structures and engineering, Universitat Politecnica de Catalunya, 2007

    Google Scholar 

  55. Rabczuk T, Eibl J, Stempniewski L. Simulation of high velocity concrete fragmentation using SPH/MLSPH. International Journal for Numerical Methods in Engineering, 2003, 56(10): 1421–1444

    Article  MATH  Google Scholar 

  56. Rabczuk T, Eibl J, Stempniewski L. Numerical analysis of high speed concrete fragmentation using a meshfree Lagrangian method. Engineering Fracture Mechanics, 2004, 71(4-6): 547–556

    Article  Google Scholar 

  57. Rabczuk T, Eibl J. Modeling dynamic failure of concrete with meshfree particle methods. International Journal of Impact Engineering, 2006, 32(11): 1878–1897

    Article  Google Scholar 

  58. Rabczuk T, Samaniego E, Belytschko T. Simplied model for predicting impulsive loads on submerged structures to account for fluid-structure interaction. International Journal of Impact Engineering, 2007, 34(2): 163–177

    Article  Google Scholar 

  59. Rabczuk T, Areias P, Belytschko T. A simplied meshfree method for shear bands with cohesive surfaces. International Journal for Numerical Methods in Engineering, 2007, 69(5): 993–1021

    Article  MATH  Google Scholar 

  60. Rabczuk T, Samaniego E. Discontinuous modelling of shear bands using adaptive meshfree methods. Computer Methods in Applied Mechanics and Engineering, 2008, 197(6-8): 641–658

    Article  MathSciNet  MATH  Google Scholar 

  61. Rabczuk T, Belytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799

    Article  MathSciNet  MATH  Google Scholar 

  62. Rabczuk T, Gracie R, Song J H, Belytschko T. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71

    MathSciNet  MATH  Google Scholar 

  63. Rabczuk T, Areias P, Belytschko T. A meshfree thin shell method for nonlinear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548

    Article  MathSciNet  MATH  Google Scholar 

  64. Budarapu P R, Javvaji B, Sutrakar V K, Roy Mahapatra D, Zi G, Rabczuk T. Crack propagation in Graphene. Journal of Applied Physics, 2015, 118(6): 064307

    Article  Google Scholar 

  65. Sudhir Sastry Y B, Budarapu P R, Madhavi N, Krishna Y. Buckling analysis of thin wall stiffened composite panels. Computational Materials Science, 2015, 96B: 459–471

    Article  Google Scholar 

  66. Sudhir Sastry Y B, Budarapu P R, Krishna Y, Devaraj S. Studies on ballistic impact of the composite panels. Theoretical and Applied Fracture Mechanics, 2014, 72: 2–12

    Article  Google Scholar 

  67. Budarapu P R, Sudhir Sastry Y B, Javvaji B, Mahapatra D R. Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Frontiers of Structural and Civil Engineering, 2014, 8(2): 151–159

    Article  Google Scholar 

  68. Budarapu P R, Sudhir Sastry Y B, Natarajan R. Design concepts of an aircraft wing: composite and morphing airfoil with auxetic structures. Frontiers of Structural and Civil Engineering, (accepted for publication)

  69. Hou G, Wang J, Layton A. Numerical methods for fluid-structure interaction-A review. Journal of Communications in Computational Physics, 2012, 12(2): 337–377

    Article  MathSciNet  MATH  Google Scholar 

  70. Raja R S. Coupled fluid structure interaction analysis on a cylinder exposed to ocean wave loading. M.Sc.[dissertation]. Goteborg: Department of Applied Mechanics, Chalmers University of Technology, 2012

    Google Scholar 

  71. Schmucker H, Flemming F, Coulson S. Two-Way Coupled Fluid Structure Interaction Simulation of a Propeller Turbine. International Journal of Fluid Machinery and Systems, 2010, 3(4): 342–351

    Article  Google Scholar 

  72. Iliev O, Mikelic A, Turek S, Popova P. Fluid structure interaction problems in deformable porous media: Toward permeability of deformable porous media. Fraunhofer-Institut für Techno-und Wirtschaftsmathematik ITWM, 2004, 65, 1–39

    Google Scholar 

  73. Liaghat T. Two Way Fluid Structure Coupling Vibration and Damping Analysis of an Oscillating Hydrofoil. Master Thesis, Montreal: Department of Mechanical Engineering, Polytechnic School of Montreal, 2014

    Book  Google Scholar 

  74. Benra F K, Dohmen H J, Pei J, Schuster S, Wan B. A Comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions. Journal of Applied Mathematics, 2011, 853560: 1–16

    Article  MathSciNet  MATH  Google Scholar 

  75. Bijl H, Alexander H, Zuijlen V, Bosscher S. Two Level Algorithms for Partitioned Fluid-Structure Interaction Computations. European Conference on Computational Fluid Dynamics, Delft, Netherland, September 5–8, 2006

    Google Scholar 

  76. Razzaq M, Tsotskas C, Turek S, Hron J, Kipouros T, Savill M. Insight into Fluid Structure Interaction Benchmarking through Multi-Objective Optimization. Wiley InterScience, 2010, 2: 1–25

    MATH  Google Scholar 

  77. Forster C. Robust Methods for Fluid-Structure Interaction With Stabilized Finite Elements. Dissertation for the Doctoral Degree, Stuttgart: Institute of Structural Mechanics, University of Stuttgart, 2007

    Google Scholar 

  78. Bonisch S, Dunne T, Rannacher R. Numerics of fluid-structure interaction. Hemodynamical flows, modeling. Analysis and Simulation, 2008, 37: 333–378

    Article  MathSciNet  MATH  Google Scholar 

  79. Hengstler J A N. Influence of the Fluid-Structure Interaction on the Vibrations of Structures. Dissertation for the Doctoral Degree, Zurich: Faculty of Engineering, ETH Zurich, 2013

    Google Scholar 

  80. Vorgelegt V. Fluid-Structure Interaction Induced Oscillation of Flexible Structures in Uniform Flows. Dissertation for the Doctoral Degree, Erlangen: Faculty of Engineering, Universitat Erlangen-Nurnberg, 2012

    Google Scholar 

  81. Sarkic A. Validated numerical simulation of fluid-structure interactions of bridge girders in turbulent wind fields. PhD [dissertation], Bochum: Faculty of Civil and Environmental Engineering, Ruhr-Universität Bochum, 2014

    Google Scholar 

  82. Ubertini F. Wind Effects on Bridges: Response, Stability and Control. Dissertation for the Doctoral Degree, Pavia: School of Civil Engineering, University of Pavia, 2008

    Google Scholar 

  83. Selvam R P, Tarini M J, Larsen A. Computer modeling of flow around bridges using LES and FEM. Journal of wind engineering, 1998, 77&78: 643–651

    Google Scholar 

  84. Munson B R, Young D F, Okiishi T H. Fundamentals of Fluid Mechanics. 4th ed. New York: JohnWiley & Sons, Inc. 2002, 578–584

    MATH  Google Scholar 

  85. Bourdier S. Vortex-Induced Vibrations of a non-linearly supported rigid cylinder. Dissertation for the Doctoral Degree, Southampton: School of Civil Engineering and the Environment, University of Southampton, 2008

    Google Scholar 

  86. Peng J, Chen G S. Flow oscillating structure interactions and the applications to propulsion and energy harvest. Journal of Applied Physics Research, 2012, 4(2): 1–14

    MathSciNet  Google Scholar 

  87. Liaw K F. Simulation of Flow around Bluff Bodies and Bridge Deck Sections using CFD. Dissertation for the Doctoral Degree, Nottingham: School of Civil Engineering, University of Nottingham, 2005

    Google Scholar 

  88. Farshidianfar A, Zanganeh H. The lock-in phenomenon in VIV using a modified wake oscillator model for both high and low mass-damping ratio. Iranian Journal of Mechanical Engineering, 2009, 10(2): 5–28

    Google Scholar 

  89. Puckett J, Johnson R, Barker M. 2011. Study of the Effects ofWind Power and Vortex-Induced Vibrations to Establish Fatigue Design Criteria for High-Mast Poles. Department of Transportation, University Transportation Centers Program, University of Wyoming, Wyoming, USA, August, 2011

    Google Scholar 

  90. Salvatori L. Assessment and Mitigation of Wind Risk of Suspended-Span Bridges. Dissertation for the Doctoral Degree, Braunschweig and Florence: Faculty of Architecture, Civil Engineering and Environmental Sciences, University of Braunschweig and Faculty of Engineering, University of Florence, 2007

    Google Scholar 

  91. Kuroda S. Numerical simulation of flow around a box girder of a long span suspension bridge. Journal of wind engineering, 1997, 67&68: 239–252

    Google Scholar 

  92. Larsen A, Walther J H. Aeroelastic analysis of bridge girder sections based on discrete vortex simulations. Journal of wind engineering, 1997, 67&68: 253–265

    Google Scholar 

  93. Tran D A. Numerical Investigation into the Suppression Mechanism of Vortex-Induced Vibration for Box Girder in the Presence of Flap. Dissertation for the Doctoral Degree, Yokohama: Urban Innovation Faculty, Yokohama National University, 2014

    Google Scholar 

  94. Facchinetti M L, de Langre E, Biolley F. Vortex-induced travelling waves along a cable. European Journal of Mechanics-B/Fluids, 2004, 23(1): 199–208

    Article  MATH  Google Scholar 

  95. Van Dien J P. Fatihue Resistant Design of Cantilevered Sign, Signal, and Luminaire Support Structures. Master Thesis, Pennsylvania: Lehigh University, 1995

    Google Scholar 

  96. Bourguet R, Karniadakis G E, Triantafyllou M S. Lock-in of the vortex-induced vibrations of a long tensioned beam in shear flow. Journal of Fluids and Structures, 2011, 27(5-6): 838–847

    Article  Google Scholar 

  97. Asyikin M T. CFD Simulation of Vortex Induced Vibration of a Cylindrical Structure. Master Thesis, Trondheim: Department of Civil and Transport Engineering. Norwegian University of Science and Technology, 2012

    Google Scholar 

  98. Zhang X. Aeroelastic Analysis of Super Long Cable-Supported Bridges. Dissertation for the Doctoral Degree, Nanyang: School of Civil and Environmental Engineering, Nanyang Technological University, 2003

    Google Scholar 

  99. Adelino V L, Cunha A, Simoes L M C. CFD based Evaluation of the Lock-in Phenomenon of a Bridge under Wind. III European Conference on Computational Mechanics, Solids, Structures and Coupled Problems in Engineering, Lisbon, Portugal, June 5–8, 2006

    Google Scholar 

  100. Andersson C, Ahl D. Fluid Structure Interaction Evaluation of two coupling techniques. Master Thesis, Halmstad: School of Information Science, Computer and Electrical Engineering, Halmstad University, 2011

    Google Scholar 

  101. Gale J. Fluid-Structure Interaction for simulations of fast transients. Dissertation for the Doctoral Degree, Ljubljana: Faculty of Mathematics and Physics, University of Ljubljana, 2008

    Google Scholar 

  102. Hassler M. Quasi-Static Fluid-Structure Interactions Based on a Geometric Description of Fluids. Dissertation for the Doctoral Degree, Karlsruhe: Faculty of Civil Engineering, Geo-and Environmental Sciences, Karlsruhe Institute of Technology, 2009

    Google Scholar 

  103. Hansen M S. Boundary Conditions for 3D Fluid-Structure Interaction Simulations of Compliant Vessels. Master Thesis, Trondheim: Department of Structural Engineering, Norwegian University of Science and Technology, 2013

    Google Scholar 

  104. Ren H, Zhuang X, Cai Y, Rabczuk T. Dual-Horizon Peridynamics. International Journal for Numerical Methods in Engineering, 2016, 453–474

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazim Abdul Nariman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nariman, N.A. Influence of fluid-structure interaction on vortex induced vibration and lock-in phenomena in long span bridges. Front. Struct. Civ. Eng. 10, 363–384 (2016). https://doi.org/10.1007/s11709-016-0353-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-016-0353-y

Keywords

Navigation