Skip to main content
Log in

A perspective on the promoting effect of Ir and Au on Pd toward the ethanol oxidation reaction in alkaline media

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

There remain great challenges in developing highly efficient electrocatalysts with both high activity and good stability for the ethanol oxidation reaction in alkaline media. Herein, two architectures of tri-metallic PdIrAu/C electrocatalysts are designed and the promoting effect of Au and Ir on Pd toward the ethanol oxidation reaction (EOR) in alkaline media is investigated in detail. On the one hand, the tri-metallic Pd7Au7Ir/C electrocatalyst with a solid solution alloy architecture is less active relative to Pd7Ir/C and Pd/C while the stabilizing effect of Au leads to both a higher activity and a lower degradation percentage after 3000 cycles of the accelerated degradation test (ADT) on Pd7Au7Ir/C than those on Pd7Ir/C. On the other hand, the tri-metallic Pd7Ir@(1/3Au)/C electrocatalyst with a near surface alloy architecture delivers a much higher activity with an improvement up to 50.4% compared to Pd7Ir/C. It is speculated that for the tri-metallic Pd7Ir@(1/3Au)/C electrocatalyst, certain Au atoms are well designed on surfaces to introduce an electronic modification, thus leading to an anti-poisoning effect and improving the EOR activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johansson T B, Kelly H, Reddy A K N, Williams R H. Renewable Energy: Sources for Fuels and Electricity. Washington: Island Press, 1993

    Google Scholar 

  2. Chum H L, Overend R P. Biomass and renewable fuels. Fuel Processing Technology, 2001, 71(1–3): 187–195

    Article  Google Scholar 

  3. Vielstich W, Yokokawa H, Gasteiger H A. Handbook of Fuel Cells: Fundamentals Technology and Applications. Chichester: John Wiley & Sons, 2009

    Google Scholar 

  4. Carrette L, Friedrich K A, Stimming U. Fuel cells–fundamentals and applications. Fuel Cells, 2001, 1(1): 5–39

    Article  Google Scholar 

  5. Li Y S, Feng Y, Sun X D, He Y L. A sodium-ion-conducting direct formate fuel cell: yielding electricity and base. Angewandte Chemie International Edition, 2017, 56(21): 5734–5737

    Article  Google Scholar 

  6. Yu E H, Wang X, Krewer U, Li L, Scott K. Direct oxidation alkaline fuel cells: from materials to systems. Energy & Environmental Science, 2012, 5(2): 5668–5680

    Article  Google Scholar 

  7. Zhao T S, Li Y S, Shen S Y. Anion-exchange membrane direct ethanol fuel cells: status and perspective. Frontiers of Energy and Power Engineering in China, 2010, 4(4): 443–458

    Article  Google Scholar 

  8. Li Y S, Sun X D, Feng Y. Hydroxide-self-feeding high-temperature alkaline direct formate fuel cells. ChemSusChem, 2017, 10(10): 2135–2139

    Article  Google Scholar 

  9. Yu E H, Krewer U, Scott K. Principles and materials aspects of direct alkaline alcohol fuel cells. Energies, 2010, 3(8): 1499–1528

    Article  Google Scholar 

  10. Bianchini C, Shen P K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chemical Reviews, 2010, 41(3): 4183–4206

    Google Scholar 

  11. Shen S Y, Zhao T S, Xu J B, Li Y S. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. Journal of Power Sources, 2010, 35(23): 12911–12917

    Google Scholar 

  12. Zhang Z, Zhang C, Sun J, et al. Ultrafine nanoporous Pd Fe/Fe3O4 catalysts with doubly enhanced activities towards electro-oxidation of methanol and ethanol in alkaline media. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2013, 1(11): 3620–3628

    Article  Google Scholar 

  13. Mukherjee P, Roy P S, Mandal K, Bhattacharjee D, Dasgupta S, Bhattacharya S K. Improved catalysis of room temperature synthesized Pd-Cu alloy nanoparticles for anodic oxidation of ethanol in alkaline media. Electrochimica Acta, 2015, 154: 447–455

    Article  Google Scholar 

  14. Peng C, Hu Y, Liu M, Zheng Y. Hollow raspberry-like PdAg alloy nanospheres: high electrocatalytic activity for ethanol oxidation in alkaline media. Journal of Power Sources, 2015, 278: 69–75

    Article  Google Scholar 

  15. Ma L, He H, Hsu A, Chen R R. PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells. Journal of Power Sources, 2013, 241(241): 696–702

    Article  Google Scholar 

  16. Maksić A, Smiljanić M, Miljanić Š, Rakočević Z, Štrbac S. Ethanol oxidation on Rh/Pd(poly) in alkaline solution. Electrochimica Acta, 2016, 209: 323–331

    Article  Google Scholar 

  17. Ma Y W, Zhang H M, Zhong H X, Xu T, Jin H, Geng X Y. High active PtAu/C catalyst with core–shell structure for oxygen reduction reaction. Catalysis Communications, 2010, 11(5): 434–437

    Article  Google Scholar 

  18. Zhang J L, Sasaki K, Sutter E, Adzic R R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science, 2007, 315(5809): 220–222

    Article  Google Scholar 

  19. Liang Z X, Zhao T S, Xu J B. Stabilization of the platinum–ruthenium electrocatalyst against the dissolution of ruthenium with the incorporation of gold. Journal of Power Sources, 2008, 185(1): 166–170

    Article  Google Scholar 

  20. Xu J B, Zhao T S, Shen S Y, Li Y S. Stabilization of the palladium electrocatalyst with alloyed gold for ethanol oxidation. International Journal of Hydrogen Energy, 2010, 35(13): 6490–6500

    Article  Google Scholar 

  21. Shen S Y, Guo Y G, Luo L X, Li F, Li L, Wei G H, Yin J W, Ke C C, Zhang J L. Comprehensive analysis on the highly active and stable PdAu/C electrocatalyst for ethanol oxidation reaction in alkaline media. Journal of Physical Chemistry C, 2018, 122(3): 1604–1611

    Article  Google Scholar 

  22. Shen S Y, Zhao T S, Xu J B. Carbon-supported bimetallic PdIr catalysts for ethanol oxidation in alkaline media. Electrochimica Acta, 2010, 55(28): 9179–9184

    Article  Google Scholar 

  23. Liang Y, Zhang H, Zhong H, Zhu X, Tian Z, Xu D, Yi B. Preparation and characterization of carbon-supported PtRuIr catalyst with excellent co-tolerant performance for proton-exchange membrane fuel cells. Journal of Catalysis, 2006, 238(2): 468–476

    Article  Google Scholar 

  24. Chen A, La Russa D J, Miller B. Effect of the iridium oxide thin film on the electrochemical activity of platinum nanoparticles. Langmuir, 2004, 20(22): 9695–9702

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 21503134 and 21533005), and the National Key Research and Development Program of China (Grant No. 2016YFB0101201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, S.Y., Guo, Y.G., Wei, G.H. et al. A perspective on the promoting effect of Ir and Au on Pd toward the ethanol oxidation reaction in alkaline media. Front. Energy 12, 501–508 (2018). https://doi.org/10.1007/s11708-018-0586-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-018-0586-7

Keywords

Navigation