Advertisement

Frontiers in Energy

, Volume 12, Issue 2, pp 225–232 | Cite as

Electrochemical performance of thermally-grown SiO2 as diffusion barrier layer for integrated lithium-ion batteries

  • X. D. Huang
  • X. F. Gan
  • Q. A. Huang
  • J. Z. Yang
Research Article
  • 63 Downloads

Abstract

Direct integration of lithium-ion battery (LIB) with electronic devices on the same Si substrate can significantly miniaturize autonomous micro systems. For achieving direct integration, a barrier layer is essential to be inserted between LIB and the substrate for blocking Li+ diffusion. In this paper, the feasibility of thermal SiO2 film as the barrier layer is investigated by electrochemical characterization and X-ray photoelectron spectroscopy (XPS). Due to the negligible side reactions of thermal SiO2 with electrolyte, the solid electrolyte interphase (SEI) layer formed on the surface of the barrier layer is thin and the SEI content mainly consists of hydrocarbon together with slight polyethylene oxide (PEO), Li x PO y F z , and Li2CO3. Although 8-nm thermal SiO2 effectively prevents the substrate from alloying with Li+, the whole film changes to Li silicate after electrochemical cycling due to the irreversible chemical reactions of SiO2 with electrolyte. This degrades the performance of the barrier layer against the electrolyte penetration, thus leading to the existence of Li+ (in the form of F-Si-Li) and solvent decompositions (with the products of hydrocarbon and PEO) near the barrier layer/substrate interface. Moreover, it is found that the reaction kinetics of thermal SiO2 with electrolyte decrease significantly with increasing the SiO2 thickness and no reactions are found in the bulk of the 30-nm SiO2 film. Therefore, thermal SiO2 with an appropriate thickness is a promising barrier layer for direct integration.

Keywords

autonomous micro system direct integration barrier layer thermal SiO2 film X-ray photoelectron spectroscopy (XPS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20140639) and the National Natural Science Foundation of China (Grant No. 21206076).

References

  1. 1.
    Wang Y, Liu B, Li Q, Cartmell S, Ferrara S, Deng Z D, Xiao J. Lithium and lithium ion batteries for applications in microelectronic devices: a review. Journal of Power Sources, 2015, 286(14): 330–345CrossRefGoogle Scholar
  2. 2.
    Liu J, Banis M N, Li X, Lushington A, Cai M, Li R, Sham T K, Sun X. Atomic layer deposition of lithium tantalate solid-state electrolytes. Journal of Physical Chemistry C, 2013, 117(39): 20260–20267CrossRefGoogle Scholar
  3. 3.
    Janski R, Fugger M, Sternad M, Wilkening M. Lithium distribution in monocrystalline silicon-based lithium-ion batteries. ECS Transactions, 2014, 62(1): 247–253CrossRefGoogle Scholar
  4. 4.
    Baggetto L, Oudenhoven J F M, Van Dongen T, Klootwijk J H, Mulder M, Niessen R A H, de CroonMH J M, Notten P H L. On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries. Journal of Power Sources, 2009, 189(1): 402–410CrossRefGoogle Scholar
  5. 5.
    Knoops H C M, Baggetto L, Langereis E, van de Sanden M C M, Klootwijk J H, Roozeboom F, Niessen R A H, Notten P H L, Kessels WMM. Deposition of TiN and TaN by remote plasma ALD for Cu and Li diffusion barrier applications. Journal of the Electrochemical Society, 2008, 155(12): G287–G294CrossRefGoogle Scholar
  6. 6.
    Baggetto L, Niessen R A H, Roozeboom F, Notten P H L. High energy density all-solid-state batteries: a challenging concept towards 3D integration. Advanced Functional Materials, 2008, 18 (7): 1057–1066CrossRefGoogle Scholar
  7. 7.
    Huang X D, Huang J Q, Qin M, Huang Q A. A fully integrated capacitive pressure sensor with high sensitivity. In: 6th IEEE Conference on SENSORS (IEEE SENSORS 2007), Atlanta, United States, 2007, 1052–1055Google Scholar
  8. 8.
    Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3(1): 31–35CrossRefGoogle Scholar
  9. 9.
    Streetman B G, Banerjee S K. Solid State Electronic Devices, 6th ed. New Jersey: Prentice Hall, 2007Google Scholar
  10. 10.
    Roozeboom F, Elfrink R, Verhoeven J, Van den Meerakher J, Holthuysen F. High-value MOS capacitor arrays in ultradeep trenches in silicon. Microelectronic Engineering, 2000, 53(1–4): 581–584CrossRefGoogle Scholar
  11. 11.
    Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Yang Y, Hu L, Cui Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnology, 2012, 7(5): 310–315CrossRefGoogle Scholar
  12. 12.
    Sim S, Oh P, Park S, Cho J. Critical thickness of SiO2 coating layer on core@shell bulk@nanowire Si anode materials for Li-ion batteries. Advanced Materials, 2013, 25(32): 4498–4503CrossRefGoogle Scholar
  13. 13.
    Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3(1): 31–35CrossRefGoogle Scholar
  14. 14.
    Liu B, Soares P, Checkles C, Zhao Y, Yu G. Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Letters, 2013, 13(7): 3414–3419CrossRefGoogle Scholar
  15. 15.
    Luais E, Ghamouss F, Wolfman J, Desplobain S, Gautier G, Tran-Van F, Sakai J. Mesoporous silicon negative electrode for thin film lithium-ion microbatteries. Journal of Power Sources, 2015, 274: 693–700CrossRefGoogle Scholar
  16. 16.
    Takezawa H, Iwamoto K, Ito S, Yoshizawa H. Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries. Journal of Power Sources, 2013, 244(6): 149–157CrossRefGoogle Scholar
  17. 17.
    Tu J, Yuan Y, Zhan P, Jiao H, Wang X, Zhu H, Jiao S. Straightforward approach toward SiO2 nanospheres and their superior lithium storage performance. Journal of Physical Chemistry C, 2014, 118(14): 7357–7362CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Li Y, Wang Z, Zhao K. Lithiation of SiO2 in Li-ion batteries: in situ transmission electron microscopy experiments and theoretical studies. Nano Letters, 2014, 14(12): 7161–7170CrossRefGoogle Scholar
  19. 19.
    Miyachi M, Yamamoto H, Kawai H, Ohta T, Shirakata M. Analysis of SiO anodes for lithium-ion batteries. Journal of the Electrochemical Society, 2005, 152(10): A2089–A2091CrossRefGoogle Scholar
  20. 20.
    Chan C K, Ruffo R, Hong S S, Cui Y. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. Journal of Power Sources, 2009, 189(2): 1132–1140CrossRefGoogle Scholar
  21. 21.
    Arreaga-Salas D E, Sra A K, Roodenko K, Chabal Y J, Hinkle C L. Progression of solid electrolyte interphase formation on hydrogenated amorphous silicon anodes for lithium-ion batteries. Journal of Physical Chemistry C, 2012, 116(16): 9072–9077CrossRefGoogle Scholar
  22. 22.
    Ensling D, Stjerndahl M, Nytén A, Gustafsson T, Thomas J O. A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSIand LiPF6-based electrolytes. Journal of Materials Chemistry, 2009, 19(1): 82–88CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of MEMS of the Ministry of Education, School of Electronic Science and EngineeringSoutheast UniversityNanjingChina
  2. 2.School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations