Frontiers in Energy

, Volume 12, Issue 2, pp 198–224 | Cite as

Redox flow batteries—Concepts and chemistries for cost-effective energy storage

  • Matthäa Verena Holland-Cunz
  • Faye Cording
  • Jochen Friedl
  • Ulrich Stimming
Feature Article


Electrochemical energy storage is one of the few options to store the energy from intermittent renewable energy sources like wind and solar. Redox flow batteries (RFBs) are such an energy storage system, which has favorable features over other battery technologies, e.g. solid state batteries, due to their inherent safety and the independent scaling of energy and power content. However, because of their low energy-density, low power-density, and the cost of components such as redox species and membranes, commercialised RFB systems like the all-vanadium chemistry cannot make full use of the inherent advantages over other systems. In principle, there are three pathways to improve RFBs and to make them viable for large scale application: First, to employ electrolytes with higher energy density. This goal can be achieved by increasing the concentration of redox species, employing redox species that store more than one electron or by increasing the cell voltage. Second, to enhance the power output of the battery cells by using high kinetic redox species, increasing the cell voltage, implementing novel cell designs or membranes with lower resistance. The first two means reduce the electrode surface area needed to supply a certain power output, thereby bringing down costs for expensive components such as membranes. Third, to reduce the costs of single or multiple components such as redox species or membranes. To achieve these objectives it is necessary to develop new battery chemistries and cell configurations. In this review, a comparison of promising cell chemistries is focused on, be they all-liquid, slurries or hybrids combining liquid, gas and solid phases. The aim is to elucidate which redox-system is most favorable in terms of energy-density, power-density and capital cost. Besides, the choice of solvent and the selection of an inorganic or organic redox couples with the entailing consequences are discussed.


electrochemical energy storage redox flow battery vanadium 



This work was supported by Newcastle University and Siemens AG.


  1. 1.
    Yang Z, Zhang J, Kintner-Meyer MC W, Lu X, Choi D, Lemmon J P, Liu J. Electrochemical energy storage for green grid. Chemical Reviews, 2011, 111(5): 3577–3613Google Scholar
  2. 2.
    Offer G J, Howey D, Contestabile M, Clague R, Brandon N P. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energy Policy, 2010, 38(1): 24–29Google Scholar
  3. 3.
    Ramachandran S, Stimming U. Well to wheel analysis of low carbon alternatives for road traffic. Energy & Environmental Science, 2015, 8(11): 3313–3324Google Scholar
  4. 4.
    Scrosati B, Garche J. Lithium batteries: status, prospects and future. Journal of Power Sources, 2010, 195(9): 2419–2430Google Scholar
  5. 5.
    Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451(7179): 652–657Google Scholar
  6. 6.
    Vetter K J. Electrochemical Kinetics—Theoretical and Experimental Aspects. English ed. New York/London: Academic Press Inc., 1967Google Scholar
  7. 7.
    Friedl J, Stimming U. The importance of electrochemistry for the development of sustainable mobility. In: Bruhns H, ed. Energ. Forsch. Und Konzepte, Arbeitskreis Energie (AKE) in der Deutschen Physikalischen Gesellschaft, 2014Google Scholar
  8. 8.
    McCreery R L. Advanced carbon electrode materials for molecular electrochemistry. Chemical Reviews, 2008, 108(7): 2646–2687Google Scholar
  9. 9.
    Fischer U, Saliger R, Bock V, Petricevic R, Fricke J. Carbon aerogels as electrode material in supercapacitors. Journal of Porous Materials, 1997, 4(4): 281–285Google Scholar
  10. 10.
    Barbieri O, Hahn M, Herzog A, Kötz R. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon, 2005, 43(6): 1303–1310Google Scholar
  11. 11.
    Tessonnier J P, Rosenthal D, Hansen T W, Hess C, Schuster M E, Blume R, Girgsdies F, Pfänder N, Timpe O, Su D S. Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon, 2009, 47(7): 1779–1798Google Scholar
  12. 12.
    Béguin F, Presser V, Balducci A, Frackowiak E. Carbons and electrolytes for advanced supercapacitors. Advanced Materials, 2014, 26(14): 2219–2251Google Scholar
  13. 13.
    Ruiz V, Blanco C, Raymundo-Piñero E, Khomenko V, Béguin F, Santamaría R. Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors. Electrochimica Acta, 2007, 52(15): 4969–4973Google Scholar
  14. 14.
    Marder M P. Condensed Matter Physics. 2nd ed. Hoboken: John Wiley & Sons, Inc., 2010Google Scholar
  15. 15.
    Zeier W G, Janek J. A solid future for battery development. Nature Energy, 2016, 1: 1–4Google Scholar
  16. 16.
    Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for highenergy batteries. Nature Nanotechnology, 2017, 12(3): 194–206Google Scholar
  17. 17.
    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J G. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014, 7(2): 513–537Google Scholar
  18. 18.
    Friedl J, Stimming U. Model catalyst studies on hydrogen and ethanol oxidation for fuel cells. Electrochimica Acta, 2013, 101: 41–58Google Scholar
  19. 19.
    Schmickler W, Santos E. Interfacial Electrochemistry. 2nd ed. Berlin: Springer, 2010Google Scholar
  20. 20.
    Zhang J, Vukmirovic M B, Xu Y, Mavrikakis M, Adzic R R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie International Edition, 2005, 44(14): 2132–2135Google Scholar
  21. 21.
    Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Nørskov J K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry, 2009, 1(7): 552–556Google Scholar
  22. 22.
    Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886–17892Google Scholar
  23. 23.
    Marshall R J, Walsh F C. A review of some recent electrolytic cell designs. Surface Technology, 1985, 24(1): 45–77Google Scholar
  24. 24.
    Walsh F C, Pletcher D. Electrochemical engineering and cell design. In: Pletcher D, Tian Z-Q, Williams D (eds.), Developments in Electrochemistry: Science Inspired by Martin Felischmann. Hoboken: John Wiley & Sons, 2014: 95–112Google Scholar
  25. 25.
    Bond M, Henderson T L E, Mann D R, Mann T F, Thormann W, Zoski C G. A fast electron transfer rate for the oxidation of ferrocene in acetonitrile or dichloromethane at platinum disk ultramicroelectrodes. Analytical Chemistry, 1988, 60(18): 1878–1882Google Scholar
  26. 26.
    Friedl J, Stimming U. Determining electron transfer kinetics at porous electrodes. Electrochimica Acta, 2017, 227: 235–245Google Scholar
  27. 27.
    Friedl J, Bauer C M, Rinaldi A, Stimming U. Electron transfer kinetics of the VO2+/VO2 +–reaction on multi-walled carbon nanotubes. Carbon, 2013, 63: 228–239Google Scholar
  28. 28.
    Chalamala B R, Soundappan T, Fisher G R, Anstey M R, Viswanathan V V, Perry ML. Redox flow batteries: an engineering perspective. Proceedings of the IEEE, 2014, 102(6): 976–999Google Scholar
  29. 29.
    Arenas L F, de León C P, Walsh F C. Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage. Journal of Energy Storage, 2017, 11: 119–153Google Scholar
  30. 30.
    Remick R J, Ang P G, Hearn B E, Kalafut S J, Speckman T W. Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system. US Patent 4485154, 1984Google Scholar
  31. 31.
    Skyllas-Kazacos M, Rychcik M, Robins R G, Fan G. New all-vanadium redox flow cell. Journal of the Electrochemical Society, 1986, 133(5): 1057–1058Google Scholar
  32. 32.
    Lim H S, Lackner A M, Knechtli R C. Zinc-bromine secondary battery. Journal of the Electrochemical Society, 1977, 124(8): 1154–1157Google Scholar
  33. 33.
    Perry M L, Darling R M, Zaffou R. High power density redox flow battery cells. ECS Transactions, 2013, 53(7): 7–16Google Scholar
  34. 34.
    Akhil A A, Huff G, Currier A B, Kaun B C, Rastler D M, Chen S B, Cotter A L, Bradshaw D T, Gauntlett W D. DOE / EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA. Sandia National Laboratories, 2013Google Scholar
  35. 35.
    Eckroad S. Vanadium Redox Flow Batteries: an In-Depth Analysis. Palo Alto, CA: Electric Power Research Institute, 2007Google Scholar
  36. 36.
    Livermore L, Labs N, Livermore L, Labs N, Independence E, Curtright A, Apt J, Generation W, Guttromson R. arpa-e GRIDS program overview. 2010, files/documents/files/GRIDS_ProgramOverview.pdfGoogle Scholar
  37. 37.
    Zhang M, Moore M, Watson J S, Zawodzinski T A, Counce R M. Capital cost sensitivity analysis of an all-vanadium redox-flow battery. Journal of the Electrochemical Society, 2012, 159(8): A1183–A1188Google Scholar
  38. 38.
    Viswanathan V, Crawford A, Thaller L, Stephenson D, Kim S, Wang W, Coffey G, Balducci P, Gary Z, Li L, Sprenkle V. Estimation of capital and levelized cost for redox flow batteries. The Electrochemical Society, 2012Google Scholar
  39. 39.
    Noack J, Roznyatovskaya N, Herr T, Fischer P. The chemistry of redox-flow batteries. Angewandte Chemie International Edition, 2015, 54(34): 9776–9809Google Scholar
  40. 40.
    Pan F, Wang Q. Redox species of redox flow batteries: a review. Molecules, 2015, 20(11): 20499–20517MathSciNetGoogle Scholar
  41. 41.
    Weber A Z, Mench M M, Meyers J P, Ross P N, Gostick J T, Liu Q. Redox flow batteries: a review. Journal of Applied Electrochemistry, 2011, 41(10): 1137–1164Google Scholar
  42. 42.
    Ponce de León C, Friasferrer A, Gonzalezgarcia J, Szanto D,Walsh F. Redox flow cells for energy conversion. Journal of Power Sources, 2006, 160(1): 716–732Google Scholar
  43. 43.
    Leung P, Shah A A, Sanz L, Flox C, Morante J R, Xu Q, Mohamed M R, Ponce de León C, Walsh F C. Recent developments in organic redox flow batteries: a critical review. Journal of Power Sources, 2017, 360: 243–283Google Scholar
  44. 44.
    Zhao Y, Ding Y, Li Y, Peng L, Byon H R, Goodenough J B, Yu G. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chemical Society Reviews, 2015, 44(22): 7968–7996Google Scholar
  45. 45.
    Soloveichik G L. Flow batteries: current status and trends. Chemical Reviews, 2015, 115(20): 11533–11558Google Scholar
  46. 46.
    Thaller L H. Electrically rechargable redox flow cell. US Patent 3996064, 1976Google Scholar
  47. 47.
    Sum E, Skyllas-Kazacos M. A study of the V (II)/V (III) redox couple for redox flow cell applications. Journal of Power Sources, 1985, 15(2–3): 179–190Google Scholar
  48. 48.
    Rychcik M, Skyllas-Kazacos S. Evaluation of electrode materials for vanadium redox cell. Journal of Power Sources, 1987, 19(1): 45–54Google Scholar
  49. 49.
    Hosseiny S S, Saakes M, Wessling M. A polyelectrolyte membrane-based vanadium/air redox flow battery. Electrochemistry Communications, 2011, 13(8): 751–754Google Scholar
  50. 50.
    Derr I, Bruns M, Langner J, Fetyan A, Melke J, Roth C. Degradation of all-vanadium redox flow batteries (VRFB) investigated by electrochemical impedance and X-ray photoelectron spectroscopy: Part 2 electrochemical degradation. Journal of Power Sources, 2016, 325: 351–359Google Scholar
  51. 51.
    Miller MA, Bourke A, Quill N, Wainright J S, Lynch R P, Buckley D N, Savinell R F. Kinetic study of electrochemical treatment of carbon fiber microelectrodes leading to in situ enhancement of vanadium flow battery efficiency. Journal of the Electrochemical Society, 2016, 163(9): A2095–A2102Google Scholar
  52. 52.
    Yufit V, Hale B, Matian M, Mazur P, Brandon N P. Development of a regenerative hydrogen-vanadium fuel cell for energy storage applications. Journal of the Electrochemical Society, 2013, 160(6): A856–A861Google Scholar
  53. 53.
    Tucker MC, Srinivasan V, Ross P N, Weber A Z. Performance and cycling of the iron-ion/hydrogen redox flow cell with various catholyte salts. Journal of Applied Electrochemistry, 2013, 43(7): 637–644Google Scholar
  54. 54.
    Hewa Dewage H, Wu B, Tsoi A, Yufit V, Offer G, Brandon N. A novel regenerative hydrogen cerium fuel cell for energy storage applications. Journal of Materials Chemistry A, 2015, 3(18): 9446–9450Google Scholar
  55. 55.
    Schweiss R, Pritzl A, Meiser C. Parasitic hydrogen evolution at different carbon fiber electrodes in vanadium redox flow batteries. Journal of the Electrochemical Society, 2016, 163(9): A2089–A2094Google Scholar
  56. 56.
    Shah A A, Al-Fetlawi H, Walsh F C. Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery. Electrochimica Acta, 2010, 55(3): 1125–1139Google Scholar
  57. 57.
    Weber J, Samec Z, Marecek V. The effect of anion adsorption on the kinetics of the Fe3+/Fe2+ reacion on Pt and Au electrodes in HClO4. Journal of Electroanalytical Chemistry, 1978, 89(2): 271–288Google Scholar
  58. 58.
    Jonshagen B, Lex P. The zinc/bromine battery system for utility and remote area applications. Power Engineering Journal, 1999, 13 (3): 142–148Google Scholar
  59. 59.
    Duduta M, Ho B, Wood V C, Limthongkul P, Brunini V E, Carter W C, Chiang Y M. Semi-solid lithium rechargeable flow battery. Advanced Energy Materials, 2011, 1(4): 511–516Google Scholar
  60. 60.
    Huang Q, Wang Q. Next-generation, high-energy-density redox flow batteries. ChemPlusChem, 2015, 80(2): 312–322Google Scholar
  61. 61.
    Huang Q, Li H, Grätzel M, Wang Q. Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithiumion battery. Physical Chemistry Chemical Physics, 2013, 15(6): 1793–1797Google Scholar
  62. 62.
    Pan F, Yang J, Huang Q, Wang X, Huang H, Wang Q. Redox targeting of anatase TiO2 for redox flow lithium-Ion batteries. Advanced Energy Materials, 2014, 4(15): 1400567Google Scholar
  63. 63.
    Zanzola E, Dennison C R, Battistel A, Peljo P, Vrubel H, Amstutz V, Girault H H. Redox solid energy boosters for flow batteries: polyaniline as a case study. Electrochimica Acta, 2017, 235: 664–671Google Scholar
  64. 64.
    Wang W, Kim S, Chen B, Nie Z, Zhang J, Xia G G, Li L, Yang Z. A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte. Energy & Environmental Science, 2011, 4(10): 4068Google Scholar
  65. 65.
    Izutsu K. Electrochemistry in Nonaqueous Solutions. Weinheim: Wiley-VCH GmbH & Co., 2002Google Scholar
  66. 66.
    Liu Q, Sleightholme A E S, Shinkle A A, Li Y, Thompson L T. Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries. Electrochemistry Communications, 2009, 11(12): 2312–2315Google Scholar
  67. 67.
    Sleightholme A E S, Shinkle A A, Liu Q, Li Y, Monroe C W, Thompson L T. Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries. Journal of Power Sources, 2011, 196 (13): 5742–5745Google Scholar
  68. 68.
    Matsuda Y, Tanaka K, Okada M, Takasu Y, Morita M, Matsumura-Inoue T. A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte. Journal of Applied Electrochemistry, 1988, 18(6): 909–914Google Scholar
  69. 69.
    Li Z, Li S, Liu S, Huang K, Fang D, Wang F, Peng S. Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-Tetramethyl-1-Piperidinyloxy and N-Methylphthalimide. Electrochemical and Solid-State Letters, 2011, 14(12): A171–A173Google Scholar
  70. 70.
    Gong K, Fang Q, Gu S, Li S F Y, Yan Y. Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs. Energy & Environmental Science, 2015, 8(12): 3515–3530Google Scholar
  71. 71.
    Zoski C G. Handbook of Electrochemistry. Amsterdam: Elsevier B.V., 2007Google Scholar
  72. 72.
    Wei X, Xu W, Vijayakumar M, Cosimbescu L, Liu T, Sprenkle V, Wang W. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries. Advanced Materials, 2014, 26 (45): 7649–7653Google Scholar
  73. 73.
    Metzger J O. Lösungsmittelfreie organische synthesen. Angewandte Chemie, 1998, 110(21): 3145–3148Google Scholar
  74. 74.
    Helmut GREIM. Occupational Toxicants: Critical Data Evaluation for MAK Values and Classfication of Carcinogens, Band 19, The MAK-Collection for Occupational Health and Safety. Part 1: MAK Value Documentations (DFG). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003Google Scholar
  75. 75.
    Toxicology Data Network. U.S. National Library of Medicine. 2017–7, https://toxnet.nlm.nih.govGoogle Scholar
  76. 76.
    Ejigu A, Greatorex-Davies P A, Walsh D A. Room temperature ionic liquid electrolytes for redox flow batteries. Electrochemistry Communications, 2015, 54: 55–59Google Scholar
  77. 77.
    Roth E P, Orendorff C J. How electrolytes influence battery safety. Interface, 2012, 21: 45–50Google Scholar
  78. 78.
    Friedl J, Markovits E II, Herpich M, Feng G, Kornyshev A A, Stimming U. Interface between an Au(111) surface and an ionic liquid: the influence of water on the double-layer capacitance. ChemElectroChem, 2016, 71: 311–315Google Scholar
  79. 79.
    O’Mahony A M, Silvester D S, Aldous L, Hardacre C, Compton R G. Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. Journal of Chemical & Engineering Data, 2008, 53(12): 2884–2891Google Scholar
  80. 80.
    Anderson T M, Iii H D P. Ionic liquid flow batteries. 2015–6, Scholar
  81. 81.
    Pratt H D III, Leonard J C, Steele L A M, Staiger C L, Anderson T M. Copper ionic liquids: examining the role of the anion in determining physical and electrochemical properties. Inorganica Chimica Acta, 2013, 396: 78–83Google Scholar
  82. 82.
    Prifti H, Parasuraman A, Winardi S, Lim T M, Skyllas-Kazacos M. Membranes for redox flow battery applications. Membranes (Basel), 2012, 2(2): 275–306Google Scholar
  83. 83.
    Maurya S, Shin S H, Kim Y, Moon S H. A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries. RSC Advances, 2015, 5(47): 37206–37230Google Scholar
  84. 84.
    Tang Z. Characterization techniques and electrolyte separator performance investigation for all vanadium redox flow battery. Dissertation for the Doctoral Degree. Knoxville: University of Tennessee, 2013Google Scholar
  85. 85.
    Mohammadi T, Kazacos M S. Modification of anion-exchange membranes for vanadium redox flow battery applications. Journal of Power Sources, 1996, 63(2): 179–186Google Scholar
  86. 86.
    Mohammadi T, Skyllas-Kazacos M. Characterisation of novel composite membrane for redox flow battery applications. Journal of Membrane Science, 1995, 98(1–2): 77–87Google Scholar
  87. 87.
    Mohammadi T, Chieng S C, Skyllas Kazacos M. Water transport study across commercial ion exchange membranes in the vanadium redox flow battery. Journal of Membrane Science, 1997, 133(2): 151–159Google Scholar
  88. 88.
    Yuan Z, Duan Y, Zhang H, Li X, Zhang H, Vankelecom I. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow battery. Energy & Environmental Science, 2015, 9: 22–24Google Scholar
  89. 89.
    Janoschka T, Martin N, Martin U, Friebe C, Morgenstern S, Hiller H, Hager M D, Schubert U S. An aqueous, polymer-based redoxflow battery using non-corrosive, safe, and low-cost materials. Nature, 2015, 527(7576): 78–81Google Scholar
  90. 90.
    Cathro K, Cedzynska K, Constable D C, Hoobin P M. Selection of quaternary ammonium bromides for use in zinc/bromine cells. Journal of Power Sources, 1986, 18(4): 349–370Google Scholar
  91. 91.
    Yang H S, Park J H, Ra H W, Jin C S, Yang J H. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery. Journal of Power Sources, 2016, 325: 446–452Google Scholar
  92. 92.
    Higashi S, Lee S W, Lee J S, Takechi K, Cui Y. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nature Communications, 2016, 7: 11801Google Scholar
  93. 93.
    Rychcik M, Skyllas-Kazacos M. Characteristics of a new allvanadium redox flow battery. Journal of Power Sources, 1988, 22 (1): 59–67Google Scholar
  94. 94.
    Ulaganathan M, Aravindan V, Yan Q, Madhavi S, Skyllas-kazacos M, Lim T M. Recent advancements in all-vanadium redox flow batteries. Advanced Materials, 2016, 3: 1500309Google Scholar
  95. 95.
    Skyllas-Kazacos M. Thermal stability of concentrated V(V) electrolytes in the vanadium redox cell. Journal of the Electrochemical Society, 1996, 143(4): L86Google Scholar
  96. 96.
    Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B, Zhang J, Xia G, Hu J, Graff G, Liu J, Yang Z. A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Advanced Energy Materials, 2011, 1(3): 394–400Google Scholar
  97. 97.
    Holland-Cunz M V, Friedl J, Stimming U. Anion effects on the redox kinetics of positive electrolyte of the all-vanadium redox flow battery. Journal of Electroanalytical Chemistry, 2017, in press, Scholar
  98. 98.
    Roe S, Menictas C, Skyllas-Kazacos M. A high energy density vanadium redox flow battery with 3M vanadium electrolyte. Journal of the Electrochemical Society, 2016, 163(1): A5023–A5028Google Scholar
  99. 99.
    Skyllas-Kazacos M, Kazacos M. Stabilised electrolyte solutions, methods of preparation thereof and redox cells and batteries containing stabilised electrolyte solutions. European Patent EP0729648, 1995Google Scholar
  100. 100.
    Lei Y, Liu S Q, Gao C, Liang X X, He Z X, Deng Y H, He Z. Effect of amino acid additives on the positive electrolyte of vanadium redox flow batteries. Journal of the Electrochemical Society, 2013, 160(4): A722–A727Google Scholar
  101. 101.
    Chang F, Hu C, Liu X, Liu L, Zhang J. Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery. Electrochimica Acta, 2012, 60: 334–338Google Scholar
  102. 102.
    Zhang J, Li L, Nie Z, Chen B, Vijayakumar M, Kim S, Wang W, Schwenzer B, Liu J, Yang Z. Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries. Journal of Applied Electrochemistry, 2011, 41(10): 1215–1221Google Scholar
  103. 103.
    Li S, Huang K, Liu S, Fang D, Wu X, Lu D, Wu T. Effect of organic additives on positive electrolyte for vanadium redox battery. Electrochimica Acta, 2011, 56(16): 5483–5487Google Scholar
  104. 104.
    Nguyen T D, Whitehead A, Scherer G G, Wai N, Oo M O, Bhattarai A, Chandra G P, Xu Z J. The oxidation of organic additives in the positive vanadium electrolyte and its effect on the performance of vanadium redox flow battery. Journal of Power Sources, 2016, 334: 94–103Google Scholar
  105. 105.
    Shinkle A A, Sleightholme A E S, Thompson L T, Monroe C W. Electrode kinetics in non-aqueous vanadium acetylacetonate redox flow batteries. Journal of Applied Electrochemistry, 2011, 41(10): 1191–1199Google Scholar
  106. 106.
    Shinkle A A, Sleightholme A E S, Griffith L D, Thompson L T, Monroe C W. Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery. Journal of Power Sources, 2012, 206: 490–496Google Scholar
  107. 107.
    Shinkle A A, Pomaville T J, Sleightholme A E S, Thompson L T, Monroe C W. Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries. Journal of Power Sources, 2014, 248: 1299–1305Google Scholar
  108. 108.
    Saraidaridis J D, Bartlett B M, Monroe C W. Spectroelectrochemistry of vanadium acetylacetonate and chromium acetylacetonate for symmetric nonaqueous flow batteries. Journal of the Electrochemical Society, 2016, 163(7): A1239–A1246Google Scholar
  109. 109.
    Liu Q, Shinkle A A, Li Y, Monroe C W, Thompson L T, Sleightholme A E S. Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries. Electrochemistry Communications, 2010, 12(11): 1634–1637Google Scholar
  110. 110.
    Goulet M, Kjeang E. Co-laminar flow cells for electrochemical energy conversion. Journal of Power Sources, 2014, 260: 186–196Google Scholar
  111. 111.
    Goulet MA, Ibrahim O A, Kim WH J J, Kjeang E. Maximizing the power density of aqueous electrochemical flow cells with in operando deposition. Journal of Power Sources, 2017, 339: 80–85Google Scholar
  112. 112.
    Ressel S, Laube A, Fischer S, Chica A, Flower T, Struckmann T. Performance of a vanadium redox flow battery with tubular cell design. Journal of Power Sources, 2017, 355: 199–205Google Scholar
  113. 113.
    Skyllas-Kazacos M. Novel vanadium chloride/polyhalide redox flow battery. Journal of Power Sources, 2003, 124(1): 299–302Google Scholar
  114. 114.
    Walsh F C C. Electrochemical technology for environmental treatment and clean energy conversion. Pure and Applied Chemistry, 2001, 73(12): 1819–1837Google Scholar
  115. 115.
    Review of Electrical Energy Storage Technologies and Systems and of their Potential for the UK, 2004. http://webarchive. uk/assets/dgdti00055.pdfGoogle Scholar
  116. 116.
    Li B, Nie Z, Vijayakumar M, Li G, Liu J, Sprenkle V, Wang W. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nature Communications, 2015, 6(1): 6303Google Scholar
  117. 117.
    Janoschka T, Martin N, Hager M D, Schubert U S. An aqueous redox-flow battery with high capacity and power: the TEMPTMA/MV system. Angewandte Chemie International Edition, 2016, 55 (46): 14427–14430Google Scholar
  118. 118.
    Winsberg J, Hagemann T, Muench S, Friebe C, Häupler B, Janoschka T, Morgenstern S, Hager M D, Schubert U S. Poly (boron-dipyrromethene)-A redox-active polymer class for polymer redox-flow batteries. Chemistry of Materials, 2016, 28(10): 3401–3405Google Scholar
  119. 119.
    Pratt H D III, Hudak N S, Fang X, Anderson T M. A polyoxometalate flow battery. Journal of Power Sources, 2013, 236: 259–264Google Scholar
  120. 120.
    Pratt H D III, Pratt W R, Fang X, Hudak N S, Anderson T M. Mixed-metal, structural, and substitution effects of polyoxometalates on electrochemical behavior in a redox flow battery. Electrochimica Acta, 2014, 138: 210–214Google Scholar
  121. 121.
    Friedl J, Al-Oweini R, Herpich M, Keita B, Kortz U, Stimming U. Electrochemical studies of tri-manganese substituted keggin polyoxoanions. Electrochimica Acta, 2014, 141: 357–366Google Scholar
  122. 122.
    Kremleva A, Aparicio P A, Genest A, Rösch N. Quantum chemical modeling of tri-Mn-substituted W-based Keggin polyoxoanions. Electrochimica Acta, 2017, 231: 659–669Google Scholar
  123. 123.
    Keita B, Nadjo L. New oxometalate-based materials for catalysis and electrocatalysis. Materials Chemistry and Physics, 1989, 22(1–2): 77–103Google Scholar
  124. 124.
    Christian J B, Smith S P E, Whittingham M S, Abruña H D. Tungsten based electrocatalyst for fuel cell applications. Electrochemistry Communications, 2007, 9(8): 2128–2132Google Scholar
  125. 125.
    Friedl J, Bauer C, Al-Oweini R, Yu D, Kortz U, Hoster H E, Stimming U. Investigation on polyoxometalates for the application in redox flow batteries. In: 222th ECS Meet., Honolulu, HI, 2012, Scholar
  126. 126.
    Liu Y, Lu S, Wang H, Yang C, Su X, Xiang Y. An aqueous redox flow battery with a Tungsten–Cobalt heteropolyacid as the electrolyte for both the anode and cathode. Advanced Energy Materials, 2017, 7: 2–7Google Scholar
  127. 127.
    Pope M, Varga G M Jr. Heteropoly blues. I. Reduction stoichiometries and reduction potentials of some 12-tungstates. Inorganic Chemistry, 1966, 5(7): 1249–1254Google Scholar
  128. 128.
    Huskinson B, Marshak M P, Suh C, Er S, Gerhardt M R, Galvin C J, Chen X, Aspuru-Guzik A, Gordon R G, Aziz M J. A metal-free organic-inorganic aqueous flow battery. Nature, 2014, 505(7482): 195–198Google Scholar
  129. 129.
    Chen Q, Gerhardt M R, Hartle L, Aziz M J. A quinone-bromide flow battery with 1 W/cm2 power density. Journal of the Electrochemical Society, 2015, 163(1): A5010–A5013Google Scholar
  130. 130.
    Chen Q, Gerhardt M R, Aziz M J. Dissection of the voltage losses of an acidic quinone redox flow battery. Journal of the Electrochemical Society, 2017, 164(6): A1126–A1132Google Scholar
  131. 131.
    Chen Q, Eisenach L, Aziz M J. Cycling analysis of a quinonebromide redox flow battery. Journal of the Electrochemical Society, 2016, 163(1): A5057–A5063Google Scholar
  132. 132.
    Carney T J, Collins S J, Moore J S, Brushett F R. Concentrationdependent dimerization of anthraquinone disulfonic acid and its impact on charge storage. Chemistry of Materials, 2017, 29(11): 4801–4810Google Scholar
  133. 133.
    Lin K, Chen Q, Gerhardt MR, Tong L, Kim S B, Eisenach L, Valle A W, Hardee D, Gordon R G, Aziz M J, Marshak M P. Alkaline quinone flow battery. Science, 2015, 349(6225): 1529–1532Google Scholar
  134. 134.
    Lin K, Gómez-Bombarelli R, Beh E S, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz M J, Gordon R G. A redox-flow battery with an alloxazine-based organic electrolyte. Nature Energy, 2016, 1(9): 16102Google Scholar
  135. 135.
    Rabiul Islam F M, Al Mamun K, Amanullah M T O. Smart Energy Grid Design for Island Countries. Cham: Springer, 2017Google Scholar
  136. 136.
    Johnson D A, Reid M A. Chemical and electrochemical behavior of the Cr(lll)/Cr(ll) half-cell in the iron-chromium redox energy system. Journal of the Electrochemical Society, 1985, 132(5): 1058–1062Google Scholar
  137. 137.
    Nice A W. NASA redox system development project status. In: 4th Battery and Electrochemical Contractors Conference, Washington, 1981Google Scholar
  138. 138.
    Zhang H. Development and application of high performance VRB technology. In: IFBF 2017 International Flow Battery Forum, Manchester, UK, 2017Google Scholar
  139. 139.
    Scamman D P, Reade G W, Roberts E P L. Numerical modelling of a bromide-polysulphide redox flow battery. Part 1: Modelling approach and validation for a pilot-scale system. Journal of Power Sources, 2009, 189(2): 1220–1230Google Scholar
  140. 140.
    Morrissey P. Regenesys: a new energy storage technology. International Journal of Ambient Energy, 2000, 21(4): 213–220Google Scholar
  141. 141.
    Leung P K, Ponce de León C, Walsh F C. An undivided zinc–cerium redox flow battery operating at room temperature (295K). Electrochemistry Communications, 2011, 13(8): 770–773Google Scholar
  142. 142.
    Dong Y R, Kaku H, Hanafusa K, Moriuchi K, Shigematsu T. A novel titanium/manganese redox flow battery. ECS Transactions, 2015, 69(18): 59–67Google Scholar
  143. 143.
    Zeng Y K, Zhao T S, Zhou X L, Wei L, Jiang H R. A low-cost ironcadmium redox flow battery for large-scale energy storage. Journal of Power Sources, 2016, 330: 55–60Google Scholar
  144. 144.
    Cheng J, Zhang L, Yang Y S, Wen Y H, Cao G P, Wang X D. Preliminary study of single flow zinc-nickel battery. Electrochemistry Communications, 2007, 9(11): 2639–2642Google Scholar
  145. 145.
    Morita M, Tanaka Y, Tanaka K, Matsuda Y T, Matsumura-Inoue T. Matsumura-inoue, electrochemical oxidation of ruthenium and iron complexes at rotating disk electrode in acetonitrile solution. Bulletin of the Chemical Society of Japan, 1988, 61(8): 2711–2714Google Scholar
  146. 146.
    Chakrabarti M H, Roberts E P L, Bae C, Saleem M. Ruthenium based redox flow battery for solar energy storage. Energy Conversion and Management, 2011, 52(7): 2501–2508Google Scholar
  147. 147.
    Cappillino P J, Pratt H D, Hudak N S, Tomson N C, Anderson T M, Anstey M R. Application of redox non-innocent ligands to nonaqueous flow battery electrolytes. Advanced Energy Materials, 2014, 4: 2–6Google Scholar
  148. 148.
    Hwang B, Park M S, Kim K. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries. ChemSusChem, 2015, 8(2): 310–314Google Scholar
  149. 149.
    Zhang D, Lan H, Li Y. The application of a non-aqueous bis (acetylacetone)ethylenediamine cobalt electrolyte in redox flow battery. Journal of Power Sources, 2012, 217: 199–203Google Scholar
  150. 150.
    Xu Y,Wen Y, Cheng J, Cao G, Yang Y. Study on a single flow acid Cd-chloranil battery. Electrochemistry Communications, 2009, 11 (7): 1422–1424Google Scholar
  151. 151.
    Yang B, Hoober-Burkhardt L, Wang F, Surya Prakash G K, Narayanan S R. An inexpensive aqueous flow battery for largescale electrical energy storage based on water-soluble organic redox couples. Journal of the Electrochemical Society, 2014, 161 (9): A1371–A1380Google Scholar
  152. 152.
    Oh S H, Lee C W, Chun D H, Jeon J D, Shim J, Shin K H, Yang J H. A metal-free and all-organic redox flow battery with polythiophene as the electroactive species. Journal of Materials Chemistry A, 2014, 2(47): 19994–19998Google Scholar
  153. 153.
    Weinberg D R, Gagliardi C J, Hull J F, Murphy C F, Kent C A, Westlake B C, Paul A, Ess D H, McCafferty D G, Meyer T J. Proton-coupled electron transfer. Chemical Reviews, 2012, 112(7): 4016–4093Google Scholar
  154. 154.
    Dmello R, Milshtein J D, Brushett F R, Smith K C. Cost-driven materials selection criteria for redox flow battery electrolytes. Journal of Power Sources, 2016, 330: 261–272Google Scholar
  155. 155.
    Schwenzer B, Zhang J, Kim S, Li L, Liu J, Yang Z. Membrane development for vanadium redox flow batteries. ChemSusChem, 2011, 4(10): 1388–1406Google Scholar
  156. 156.
    Wiedemann E, Heintz A, Lichtenthaler R N. Transport properties of vanadium ions in cation exchange membranes: determination of diffusion coefficients using a dialysis cell. Journal of Membrane Science, 1998, 141(2): 215–221Google Scholar
  157. 157.
    Ding C, Zhang H, Li X, Liu T, Xing F. Vanadium flow battery for energy storage: prospects and challenges. Journal of Physical Chemistry Letters, 2013, 4(8): 1281–1294Google Scholar
  158. 158.
    Beh E S, De Porcellinis D, Gracia R L, Xia K T, Gordon R G, Aziz M J. A neutral pH aqueous organic–organometallic redox flow battery with extremely high capacity retention. ACS Energy Letter, 2017, 2(3): 639–644Google Scholar
  159. 159.
    Vijayakumar M, Bhuvaneswari MS, Nachimuthu P, Schwenzer B, Kim S, Yang Z, Liu J, Graff G L, Thevuthasan S, Hu J. Spectroscopic investigations of the fouling process on Nafion membranes in vanadium redox flow batteries. Journal of Membrane Science, 2011, 366(1–2): 325–334Google Scholar
  160. 160.
    Derr I, Fetyan A, Schutjajew K, Roth C. Electrochemical analysis of the performance loss in all vanadium redox flow batteries using different cut-off voltages. Electrochimica Acta, 2017, 224: 9–16Google Scholar
  161. 161.
    Darling R, Gallagher K G, Kowalski J A, Ha S, Brushett F R. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. Energy & Environmental Science, 2014, 7(11): 3459–3477Google Scholar
  162. 162.
    U. S. Department of Energy Headquarters Advanced Research Projects Agency–Energy (ARPA-E). Grid-Scale Rampable Intermittent Dispatchable Storage (GRIDS). 2010, https://www. Scholar
  163. 163.
    Winsberg J, Hagemann T, Janoschka T, Hager M D, Schubert U S. Redox-flow batteries: from metals to organic redox-active materials. Angewandte Chemie International Edition, 2017, 56 (3): 686–711Google Scholar
  164. 164.
    Zeng Y K, Zhao T S, An L, Zhou X L, Wei L. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. Journal of Power Sources, 300(2015): 438–443Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Matthäa Verena Holland-Cunz
    • 1
  • Faye Cording
    • 1
  • Jochen Friedl
    • 1
  • Ulrich Stimming
    • 1
  1. 1.Chemistry-School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations