Nanostructural thermoelectric materials and their performance

Review Article
  • 4 Downloads

Abstract

In this review, an attempt was made to introduce the traditional concepts and materials in thermoelectric application and the recent development in searching high-performance thermoelectric materials. Due to the use of nanostructural engineering, thermoelectric materials with a high figure of merit are designed, leading to their blooming application in the energy field. One dimensional nanotubes and nanoribbons, two-dimensional planner structures, nanocomposites, and heterostructures were summarized. In addition, the state-of-the-art theoretical calculation in the prediction of thermoelectric materials was also reviewed, including the molecular dynamics (MD), Boltzmann transport equation, and non-equilibrium Green’s function. The combination of experimental fabrication and first-principles prediction significantly promotes the discovery of new promising candidates in the thermoelectric field.

Keywords

nanostructural low-dimensional thermoelectric material figure of merit first-principles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Financial support from the National Natural Science Foundation of China (Grant No. 51676212) and the Fundamental Research Funds for the Central Universities are gratefully acknowledged.

References

  1. 1.
    Snyder G J, Toberer E S. Complex thermoelectric materials. Nature Materials, 2008, 7(2): 105–114CrossRefGoogle Scholar
  2. 2.
    Zebarjadi M, Esfarjani K, Dresselhaus M S, Ren Z F, Chen G. Perspectives on thermoelectrics: from fundamentals to device applications. Energy & Environmental Science, 2012, 5(1): 5147–5162CrossRefGoogle Scholar
  3. 3.
    Tan G, Zhao L D, Kanatzidis M G. Rationally designing highperformance bulk thermoelectric materials. Chemical Reviews, 2016, 116(19): 12123–12149CrossRefGoogle Scholar
  4. 4.
    Zhao D L, Tan G. A review of thermoelectric cooling: materials, modeling and applications. Applied Thermal Engineering, 2014, 66(1–2): 15–24CrossRefGoogle Scholar
  5. 5.
    Riffat S B, Ma X. Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering, 2003, 23(8): 913–935CrossRefGoogle Scholar
  6. 6.
    Ma W, Zhang X. Study of the thermal, electrical and thermoelectric properties of metallic nanofilms. International Journal of Heat and Mass Transfer, 2013, 58(1–2): 639–651CrossRefGoogle Scholar
  7. 7.
    Zhang Y, Wang Y, Huang C, Lin G, Chen J. Thermoelectric performance and optimization of three-terminal quantum dot nanodevices. Energy, 2016, 95: 593–601CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Huang C, Wang J, Lin G, Chen J. Optimum energy conversion strategies of a nano-scaled three-terminal quantum dot thermoelectric device. Energy, 2015, 85: 200–207CrossRefGoogle Scholar
  9. 9.
    Page A, Van der Ven A, Poudeu P F P, Uher C. Origins of phase separation in thermoelectric (Ti, Zr, Hf)NiSn half-Heusler alloys from first principles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(36): 13949–13956CrossRefGoogle Scholar
  10. 10.
    Sellitto A, Cimmelli V A, Jou D. Thermoelectric effects and size dependency of the figure-of-merit in cylindrical nanowires. International Journal of Heat and Mass Transfer, 2013, 57(1): 109–116CrossRefGoogle Scholar
  11. 11.
    Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C, Kanatzidis M G. Ultrahigh power factor and thermoelectric performance in holedoped single-crystal SnSe. Science, 2016, 351(6269): 141–144CrossRefGoogle Scholar
  12. 12.
    Mi X Y, Yu X, Yao K L, Huang X, Yang N, Lü J T. Enhancing the thermoelectric figure of merit by low-dimensional electrical transport in phonon-glass crystals. Nano Letters, 2015, 15(8): 5229–5234CrossRefGoogle Scholar
  13. 13.
    Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B: Condensed Matter and Materials Physics, 1993, 47(24): 16631–16634CrossRefGoogle Scholar
  14. 14.
    Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B: Condensed Matter and Materials Physics, 1993, 47(19): 12727–12731CrossRefGoogle Scholar
  15. 15.
    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thinfilm thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602CrossRefGoogle Scholar
  16. 16.
    Goldsmid H J, Douglas R W. The use of semiconductors in thermoelectric refrigeration. British Journal of Applied Physics, 1954, 5(11): 386–390CrossRefGoogle Scholar
  17. 17.
    Wright D A. Thermoelectric properties of bismuth telluride and its alloys. Nature, 1958, 181(4612): 834CrossRefGoogle Scholar
  18. 18.
    Bergvall P, Beckman O. Thermoelectric properties of nonstoichiometric bismuth-antimony-telluride alloys. Solid-State Electronics, 1963, 6(2): 133–136CrossRefGoogle Scholar
  19. 19.
    Champness C H, Chiang P T, Parekh P. Thermoelectric properties of Bi2Te3-Sb2Te3 alloys. Canadian Journal of Physics, 1965, 43(4): 653–669CrossRefGoogle Scholar
  20. 20.
    Yim W M, Rosi F D. Compound tellurides and their alloys for peltier cooling—a review. Solid-State Electronics, 1972, 15(10): 1121–1140CrossRefGoogle Scholar
  21. 21.
    Sugihara S, Suzuki H, Kawashima S, Fujita M, Kajikawa N, Shiraishi K, Sekine R. Thermoelectric properties and electronic structures for impurity-doped Bi2Te3. In: Proceedings of the 1998 17th International Conference on Thermoelectrics. Nagoya, Japan, 1998, 59–63Google Scholar
  22. 22.
    Chung D Y, Hogan T, Brazis P, Rocci-Lane M, Kannewurf C, Bastea M, Uher C, Kanatzidis M G. CsBi4Te6: a high-performance thermoelectric material for low-temperature applications. Science, 2000, 287(5455): 1024–1027CrossRefGoogle Scholar
  23. 23.
    Chung D Y, Hogan T P, Rocci-Lane M, Brazis P, Ireland J R, Kannewurf C R, Bastea M, Uher C, Kanatzidis M G. A new thermoelectric material: CsBi4Te6. Journal of the American Chemical Society, 2004, 126(20): 6414–6428CrossRefGoogle Scholar
  24. 24.
    Jiang J, Chen L, Bai S, Yao Q, Wang Q. Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering. Scripta Materialia, 2005, 52(5): 347–351CrossRefGoogle Scholar
  25. 25.
    Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638CrossRefGoogle Scholar
  26. 26.
    Fan S, Zhao J, Guo J, Yan Q, Ma J, Hng H H. p-Type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit. Applied Physics Letters, 2010, 96(18): 182104CrossRefGoogle Scholar
  27. 27.
    Chen S, Logothetis N, Ye L, Liu J. A high performance Ag alloyed nano-scale n-type Bi2Te3 based thermoelectric material. Materials Today: Proceedings, 2015, 2(2): 610–619CrossRefGoogle Scholar
  28. 28.
    Caillat T, Fleurial J P, Borshchevsky A. Preparation and thermoelectric properties of semiconducting Zn4Sb3. Journal of Physics and Chemistry of Solids, 1997, 58(7): 1119–1125CrossRefGoogle Scholar
  29. 29.
    Jang K W, Kim I H, Lee J I, Choi G S. Thermoelectric properties of Zn4–xSb3 with x = 0–0.5. Diffusion and Defect Data, Solid State Data. Part B, Solid State Phenomena, 2007, 124–126: 1019–1022CrossRefGoogle Scholar
  30. 30.
    Liu Y B, Zhou S M, Yuan X Y, Lou S Y, Gao T, Shi X J, Wu X P. Synthesis and high-performance thermoelectric properties of beta- Zn4Sb3 nanowires. Materials Letters, 2012, 84: 116–119CrossRefGoogle Scholar
  31. 31.
    Zou T, Qin X, Zhang Y, Li X, Zeng Z, Li D, Zhang J, Xin H, Xie W, Weidenkaff A. Enhanced thermoelectric performance of β- Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering. Scientific Reports, 2015, 5(1): 17803CrossRefGoogle Scholar
  32. 32.
    Loffe A F. Semiconductor Thermoelements and Thermoelectric Cooling. London: Infosearch, Ltd, 1957Google Scholar
  33. 33.
    Fritts R W. Lead telluride alloys and junctions. In: Cadoff I B, Miller E, eds. Thermoelectric Materials and Devices. New York: Reinhold Publishing Corporation, 1960, 143–162Google Scholar
  34. 34.
    Mahan G D. Good thermoelectrics. Solid State Physics, 1998, 51: 81–157CrossRefGoogle Scholar
  35. 35.
    Wang H, Li J F, Nan C W, Zhou M, Liu W, Zhang B P, Kita T. High-performance Ag0.8Pb18 + xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Applied Physics Letters, 2006, 88(9): 092104CrossRefGoogle Scholar
  36. 36.
    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554–557CrossRefGoogle Scholar
  37. 37.
    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489(7416): 414–418CrossRefGoogle Scholar
  38. 38.
    Wu D, Zhao L D, Tong X, Li W, Wu L, Tan Q, Pei Y, Huang L, Li J F, Zhu Y, Kanatzidis M G, He J. Superior thermoelectric performance in PbTe-PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration. Energy & Environmental Science, 2015, 8(7): 2056–2068CrossRefGoogle Scholar
  39. 39.
    Chen Z, Jian Z, Li W, Chang Y, Ge B, Hanus R, Yang J, Chen Y, Huang M, Snyder G J, Pei Y. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Advanced Materials, 2017, 29(23): 1606768CrossRefGoogle Scholar
  40. 40.
    Dismukes J P, Ekstrom L, Steigmeier E F, Kudman I, Beers D S. Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300°K. Journal of Applied Physics, 1964, 35(10): 2899–2907CrossRefGoogle Scholar
  41. 41.
    Fleurial J P, Vandersande J, Scoville N, Bajgar C, Beaty J. Progress in the optimization of n-type and p-type SiGe thermoelectric materials. AIP Conference Proceedings, 1993, 271: 759–764CrossRefGoogle Scholar
  42. 42.
    Kleint C A, Heinrich A, Muehl T, Hecker J. Structural properties of strain symmetrized silicon/germanium (111) superlattices. In: IEEE International Symposium on Circuits and Systems (ISCAS 2001). Sydney, NSW, Australia, 2001, Z8131–Z8136Google Scholar
  43. 43.
    Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Letters, 2008, 8(12): 4670–4674CrossRefGoogle Scholar
  44. 44.
    Bathula S, Jayasimhadri M, Gahtori B, Singh N K, Tyagi K, Srivastava A K, Dhar A. The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys. Nanoscale, 2015, 7(29): 12474–12483CrossRefGoogle Scholar
  45. 45.
    Polvani D A, Meng J F, Chandra Shekar N V, Sharp J, Badding J V. Large improvement in thermoelectric properties in pressuretuned p-type Sb1.5Bi0.5Te3. Chemistry of Materials, 2001, 13(6): 2068–2071CrossRefGoogle Scholar
  46. 46.
    Sidorenko N A, Ivanova L D. Bi-Sb solid solutions: potential materials for high-efficiency thermoelectric cooling to below 180 K. Inorganic Materials, 2001, 37(4): 331–335CrossRefGoogle Scholar
  47. 47.
    Zhao X B, Ji X H, Zhang Y H, Zhu T J, Tu J P, Zhang X B. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Applied Physics Letters, 2005, 86(6): 062111CrossRefGoogle Scholar
  48. 48.
    Tang X, Xie W, Li H, Zhao W, Zhang Q, Niino M. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Applied Physics Letters, 2007, 90(1): 012102CrossRefGoogle Scholar
  49. 49.
    Cao Y Q, Zhao X B, Zhu T J, Zhang X B, Tu J P. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Applied Physics Letters, 2008, 92(14): 143106CrossRefGoogle Scholar
  50. 50.
    Yan X, Poudel B, Ma Y, Liu W S, Joshi G, Wang H, Lan Y, Wang D, Chen G, Ren Z F. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Letters, 2010, 10(9): 3373–3378CrossRefGoogle Scholar
  51. 51.
    Zhang G, Kirk B, Jauregui L A, Yang H, Xu X, Chen Y P, Wu Y. Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano Letters, 2012, 12(1): 56–60CrossRefGoogle Scholar
  52. 52.
    Guo Q, Chan M, Kuropatwa B A, Kleinke H. Enhanced thermoelectric properties of variants of Tl9SbTe6 and Tl9BiTe6. Chemistry of Materials, 2013, 25(20): 4097–4104CrossRefGoogle Scholar
  53. 53.
    Hong M, Chen Z G, Yang L, Zou J. BixSb2–xTe3 nanoplates with enhanced thermoelectric performance due to sufficiently decoupled electronic transport properties and strong wide-frequency phonon scatterings. Nano Energy, 2016, 20: 144–155CrossRefGoogle Scholar
  54. 54.
    Pan Y, Li J F. Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Materials, 2016, 8(6): e275CrossRefGoogle Scholar
  55. 55.
    Dharmaiah P, Kim H S, Lee C H, Hong S J. Influence of powder size on thermoelectric properties of p-type 25%Bi2Te3–75%Sb2Te3 alloys fabricated using gas-atomization and spark-plasma sintering. Journal of Alloys and Compounds, 2016, 686: 1–8CrossRefGoogle Scholar
  56. 56.
    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis MG. Cubic AgPbmSbTe2 + m: bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818–821CrossRefGoogle Scholar
  57. 57.
    Wang H, Li J F, Nan C W, Zhou M, Liu W, Zhang B P, Kita T. High-performance Ag0.8Pb18 + xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Applied Physics Letters, 2006, 88(9): 092104CrossRefGoogle Scholar
  58. 58.
    Johnsen S, He J, Androulakis J, Dravid V P, Todorov I, Chung D Y, Kanatzidis M G. Nanostructures boost the thermoelectric performance of PbS. Journal of the American Chemical Society, 2011, 133(10): 3460–3470CrossRefGoogle Scholar
  59. 59.
    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66–69CrossRefGoogle Scholar
  60. 60.
    Zhang Q, Yang S, Zhang Q, Chen S, Liu W, Wang H, Tian Z, Broido D, Chen G, Ren Z. Effect of aluminum on the thermoelectric properties of nanostructured PbTe. Nanotechnology, 2013, 24(34): 345705CrossRefGoogle Scholar
  61. 61.
    Zhang Y, Wang H, Kräemer S, Shi Y, Zhang F, Snedaker M, Ding K, Moskovits M, Snyder G J, Stucky G D. Surfactant-free synthesis of Bi2Te3-Te micro-nano heterostructure with enhanced thermoelectric figure of merit. ACS Nano, 2011, 5(4): 3158–3165CrossRefGoogle Scholar
  62. 62.
    Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496): 373–377CrossRefGoogle Scholar
  63. 63.
    Sevinçli H, Sevik C, Çağın T, Cuniberti G. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons. Scientific Reports, 2013, 3(1): 1228CrossRefGoogle Scholar
  64. 64.
    Yamini S A, Wang H, Ginting D, Mitchell D R, Dou S X, Snyder G J. Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites. ACS Applied Materials & Interfaces, 2014, 6(14): 11476–11483CrossRefGoogle Scholar
  65. 65.
    Lu Z W, Li J Q, Wang C Y, Li Y, Liu F S, Ao W Q. Effects of Mn substitution on the phases and thermoelectric properties of Ge0.8Pb0.2Te alloy. Journal of Alloys and Compounds, 2015, 621: 345–350CrossRefGoogle Scholar
  66. 66.
    Zhao L D, Zhang X, Wu H, Tan G, Pei Y, Xiao Y, Chang C, Wu D, Chi H, Zheng L, Gong S, Uher C, He J, Kanatzidis MG. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. Journal of the American Chemical Society, 2016, 138(7): 2366–2373CrossRefGoogle Scholar
  67. 67.
    Li J C, Li D, Qin X Y, Zhang J. Enhanced thermoelectric performance of p-type SnSe doped with Zn. Scripta Materialia, 2017, 126: 6–10CrossRefGoogle Scholar
  68. 68.
    Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A III, Heath J R. Silicon nanowires as efficient thermoelectric materials. Nature, 2008, 451(7175): 168–171CrossRefGoogle Scholar
  69. 69.
    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451(7175): 163–167CrossRefGoogle Scholar
  70. 70.
    Miao L, Tanemura S, Huang R, Liu C Y, Huang C M, Xu G. Large Seebeck coefficients of protonated titanate nanotubes for hightemperature thermoelectric conversion. ACS Applied Materials & Interfaces, 2010, 2(8): 2355–2359CrossRefGoogle Scholar
  71. 71.
    Li Z, Chen Y, Li J F, Chen H, Wang L, Zheng S, Lu G. Systhesizing SnTe nanocrystals leading to thermoelectric performance enhancement via an ultra-fast microwave hydrothermal method. Nano Energy, 2016, 28: 78–86CrossRefGoogle Scholar
  72. 72.
    Yang L, Yang N, Li B. Thermoelectric properties of nanoscale three dimensional Si phononic crystals. International Journal of Heat and Mass Transfer, 2016, 99: 102–106CrossRefGoogle Scholar
  73. 73.
    He D, Zhao W, Mu X, Zhou H, Wei P, Zhu W, Nie X, Su X, Liu H, He J, Zhang Q. Enhanced thermoelectric performance of heavyfermion YbAl3 via multi-scale microstructures. Journal of Alloys and Compounds, 2017, 725: 1297–1303CrossRefGoogle Scholar
  74. 74.
    Zhao W, Liu Z, Sun Z, Zhang Q, Wei P, Mu X, Zhou H, Li C, Ma S, He D, Ji P, Zhu W, Nie X, Su X, Tang X, Shen B, Dong X, Yang J, Liu Y, Shi J. Superparamagnetic enhancement of thermoelectric performance. Nature, 2017, 549(7671): 247–251CrossRefGoogle Scholar
  75. 75.
    Pei Y, Lensch-Falk J, Toberer E S, Medlin D L, Snyder G J. High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Advanced Functional Materials, 2011, 21(2): 241–249CrossRefGoogle Scholar
  76. 76.
    Gahtori B, Bathula S, Tyagi K, Jayasimhadri M, Srivastava A K, Singh S, Budhani R C, Dhar A. Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features. Nano Energy, 2015, 13: 36–46CrossRefGoogle Scholar
  77. 77.
    Ahmad S, Singh A, Bohra A, Basu R, Bhattacharya S, Bhatt R, Meshram K N, Roy M, Sarkar S K, Hayakawa Y, Debnath A K, Aswal D K, Gupta S K. Boosting thermoelectric performance of p-type SiGe alloys through in-situ metallic YSi2 nanoinclusions. Nano Energy, 2016, 27: 282–297CrossRefGoogle Scholar
  78. 78.
    Kim G H, Hwang D H, Woo S I. Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene. Physical Chemistry Chemical Physics, 2012, 14(10): 3530–3536CrossRefGoogle Scholar
  79. 79.
    Tan X J, Liu H J, Wen Y W, Lv H Y, Pan L, Shi J, Tang X F. Thermoelectric properties of ultrasmall single-wall carbon nanotubes. Journal of Physical Chemistry C, 2011, 115(44): 21996–22001CrossRefGoogle Scholar
  80. 80.
    Ouyang T, Xiao H P, Xie Y E, Wei X L, Chen Y P, Zhong J X. Thermoelectric properties of gamma-graphyne nanoribbons and nanojunctions. Journal of Applied Physics, 2013, 114(7): 073710CrossRefGoogle Scholar
  81. 81.
    Wang C, Ouyang T, Chen Y, Zhou B, Zhong J. Thermoelectric properties of gamma-graphyne nanoribbon incorporating diamond- like quantum dots. Journal of Physics. D, Applied Physics, 2016, 49(13): 135303CrossRefGoogle Scholar
  82. 82.
    Yang D, Lu C, Yin H, Herman I P. Thermoelectric performance of PbSe quantum dot films. Nanoscale, 2013, 5(16): 7290–7296CrossRefGoogle Scholar
  83. 83.
    Guo R Q, Wang X J, Kuang Y D, Huang B L. First-principles study of anisotropic thermoelectric transport properties of IV–VI semiconductor compounds SnSe and SnS. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(11): 115202CrossRefGoogle Scholar
  84. 84.
    Chen Z G, Han G, Yang L, Cheng L, Zou J. Nanostructured thermoelectric materials: current research and future challenge. Progress in Natural Science: Materials International, 2012, 22(6): 535–549CrossRefGoogle Scholar
  85. 85.
    Ginting D, Lin C C, Rathnam L, Yun J H, Yu B K, Kim S J, Rhyee J S. High thermoelectric performance due to nanoinclusions and randomly distributed interface potentials in n-type (PbTe0.93–xSe0.07Clx)0.93(PbS)0.07 composites. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(26): 13535–13543CrossRefGoogle Scholar
  86. 86.
    Zhang D, Yang J, Jiang Q, Zhou Z, Li X, Xin J, Basit A, Ren Y, He X. Multi-cations compound Cu2CoSnS4: DFT calculating, band engineering and thermoelectric performance regulation. Nano Energy, 2017, 36: 156–165CrossRefGoogle Scholar
  87. 87.
    Volz S G, Chen G. Molecular-dynamics simulation of thermal conductivity of silicon crystals. Physical Review B: Condensed Matter and Materials Physics, 2000, 61(4): 2651–2656CrossRefGoogle Scholar
  88. 88.
    Volz S G, Chen G. Molecular dynamics simulation of thermal conductivity of silicon nanowires. Applied Physics Letters, 1999, 75(14): 2056–2058CrossRefGoogle Scholar
  89. 89.
    Xie H, Ouyang T, Germaneau É, Qin G, Hu M, Bao H. Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Physical Review B: Condensed Matter and Materials Physics, 2016, 93(7): 075404CrossRefGoogle Scholar
  90. 90.
    Turney J E, Landry E S, McGaughey A J H, Amon C H. Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(6): 064301CrossRefGoogle Scholar
  91. 91.
    Li W, Carrete J, Katcho N A, Mingo N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 2014, 185(6): 1747–1758MATHCrossRefGoogle Scholar
  92. 92.
    Jiang J W, Wang J S, Li B W. A nonequilibrium Green’s function study of thermoelectric properties in single-walled carbon nanotubes. Journal of Applied Physics, 2011, 109(1): 014326CrossRefGoogle Scholar
  93. 93.
    Chen K X, Wang X M, Mo D C, Lyu S S. Thermoelectric properties of transition metal dichalcogenides: from monolayers to nanotubes. Journal of Physical Chemistry C, 2015, 119(47): 26706–26711CrossRefGoogle Scholar
  94. 94.
    Chen K X, Lyu S H, Wang X M, Fu Y X, Heng Y, Mo D C. Excellent thermoelectric performance predicted in two-dimensional buckled antimonene: a first-principles study. Journal of Physical Chemistry C, 2017, 121(24): 13035–13042CrossRefGoogle Scholar
  95. 95.
    Fan D D, Liu H J, Cheng L, Jiang P H, Shi J, Tang X F. MoS2 nanoribbons as promising thermoelectric materials. Applied Physics Letters, 2014, 105(13): 133113CrossRefGoogle Scholar
  96. 96.
    Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F, Zhang Q J. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Scientific Reports, 2014, 4(1): 6452CrossRefGoogle Scholar
  97. 97.
    Wang X M, Lu S S. Thermoelectric transport in graphyne nanotubes. Journal of Physical Chemistry C, 2013, 117(38): 19740–19745CrossRefGoogle Scholar
  98. 98.
    Chen K X, Luo Z Y, Mo D C, Lyu S S. WSe2 nanoribbons: new high-performance thermoelectric materials. Physical Chemistry Chemical Physics, 2016, 18(24): 16337–16344CrossRefGoogle Scholar
  99. 99.
    He W, Zhang G, Zhang X, Ji J, Li G, Zhao X. Recent development and application of thermoelectric generator and cooler. Applied Energy, 2015, 143: 1–25CrossRefGoogle Scholar
  100. 100.
    Gou X, Xiao H, Yang S. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Applied Energy, 2010, 87(10): 3131–3136CrossRefGoogle Scholar
  101. 101.
    Wang L. Thermopower and thermoconductance properties of zigzag edged graphene nanoribbon based thermoelectric module. Physics Letters, 2013, 377(21–22): 1486–1490CrossRefGoogle Scholar
  102. 102.
    Sevinçli H, Cuniberti G. Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(11): 113401CrossRefGoogle Scholar
  103. 103.
    Chang P H, Nikolić B K. Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(4): 041406CrossRefGoogle Scholar
  104. 104.
    Yeo P S E, Sullivan M B, Loh K P, Gan C K. First-principles study of the thermoelectric properties of strained graphene nanoribbons. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(36): 10762–10767CrossRefGoogle Scholar
  105. 105.
    Yu C, Choi K, Yin L, Grunlan J C. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano, 2011, 5(10): 7885–7892CrossRefGoogle Scholar
  106. 106.
    Avery A D, Zhou B H, Lee J, Lee E S, Miller E M, Ihly R, Wesenberg D, Mistry K S, Guillot S L, Zink B L, Kim Y H, Blackburn J L, Ferguson A J. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nature Energy, 2016, 1(4): 16033CrossRefGoogle Scholar
  107. 107.
    Hsin C L, Wingert M, Huang C W, Guo H, Shih T J, Suh J, Wang K, Wu J, Wu W W, Chen R. Phase transformation and thermoelectric properties of bismuth-telluride nanowires. Nanoscale, 2013, 5(11): 4669–4672CrossRefGoogle Scholar
  108. 108.
    Jiang J W, Wang J S. Joule heating and thermoelectric properties in short single-walled carbon nanotubes: electron-phonon interaction effect. Journal of Applied Physics, 2011, 110(12): 124319CrossRefGoogle Scholar
  109. 109.
    Si H G, Wang Y X, Yan Y L, Zhang G B. Structural, electronic, and thermoelectric properties of InSe nanotubes: first-principles calculations. Journal of Physical Chemistry C, 2012, 116(6): 3956–3961CrossRefGoogle Scholar
  110. 110.
    Huang W, Da H, Liang G. Thermoelectric performance of MX2 (M = Mo, W; X = S, Se) monolayers. Journal of Applied Physics, 2013, 113(10): 104304CrossRefGoogle Scholar
  111. 111.
    Huang W, Luo X, Gan C K, Quek S Y, Liang G. Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2. Physical Chemistry Chemical Physics, 2014, 16(22): 10866–10874CrossRefGoogle Scholar
  112. 112.
    Tahir M, Schwingenschlögl U. Tunable thermoelectricity in monolayers of MoS2 and other group-VI dichalcogenides. New Journal of Physics, 2014, 16(11): 115003CrossRefGoogle Scholar
  113. 113.
    Wickramaratne D, Zahid F, Lake R K. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. Journal of Chemical Physics, 2014, 140(12): 124710CrossRefGoogle Scholar
  114. 114.
    Lee C, Hong J, Whangbo M H, Shim J H. Enhancing the thermoelectric properties of layered transition-metal dichalcogenides 2H–MQ2 (M = Mo,W; Q = S, Se, Te) by layer mixing: density functional investigation. Chemistry of Materials, 2013, 25(18): 3745–3752CrossRefGoogle Scholar
  115. 115.
    Bhattacharyya S, Pandey T, Singh A K. Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS2. Nanotechnology, 2014, 25(46): 465701CrossRefGoogle Scholar
  116. 116.
    Guo S D. Biaxial strain tuned thermoelectric properties in monolayer PtSe2. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2016, 4(39): 9366–9374CrossRefGoogle Scholar
  117. 117.
    Wang X M, Mo D C, Lu S S. On the thermoelectric transport properties of graphyne by the first-principles method. Journal of Chemical Physics, 2013, 138(20): 204704CrossRefGoogle Scholar
  118. 118.
    Yang K, Cahangirov S, Cantarero A, Rubio A, D’Agosta R. Thermoelectric properties of atomically thin silicene and germanene nanostructures. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(12): 125403CrossRefGoogle Scholar
  119. 119.
    Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Letters, 2014, 14(11): 6393–6399CrossRefGoogle Scholar
  120. 120.
    Lv H Y, Lu W J, Shao D F, Sun Y P. Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085433CrossRefGoogle Scholar
  121. 121.
    Medrano Sandonas L, Teich D, Gutierrez R, Lorenz T, Pecchia A, Seifert G, Cuniberti G. Anisotropic thermoelectric response in twodimensional puckered structures. Journal of Physical Chemistry C, 2016, 120(33): 18841–18849CrossRefGoogle Scholar
  122. 122.
    Carrete J, Mingo N, Tian G, Ågren H, Baev A, Prasad P N. Thermoelectric properties of hybrid organic-inorganic superlattices. Journal of Physical Chemistry C, 2012, 116(20): 10881–10886CrossRefGoogle Scholar
  123. 123.
    Savelli G, Silveira Stein S, Bernard-Granger G, Faucherand P, Montès L, Dilhaire S, Pernot G. Titanium-based silicide quantum dot superlattices for thermoelectrics applications. Nanotechnology, 2015, 26(27): 275605CrossRefGoogle Scholar
  124. 124.
    Duan J, Wang X, Lai X, Li G, Watanabe K, Taniguchi T, Zebarjadi M, Andrei E Y. High thermoelectric power factor in graphene/hBN devices. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(50): 14272–14276CrossRefGoogle Scholar
  125. 125.
    Luo Y, Jiang Q, Yang J, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y, He X, Li X. Simultaneous regulation of electrical and thermal transport properties in CuInTe2 by directly incorporating excess ZnX (X = S, Se). Nano Energy, 2017, 32: 80–87CrossRefGoogle Scholar
  126. 126.
    Yin K, Su X, Yan Y, Tang H, Kanatzidis M G, Uher C, Tang X. Morphology modulation of SiC nano-additives for mechanical robust high thermoelectric performance Mg2Si1–xSnx/SiC nanocomposites. Scripta Materialia, 2017, 126: 1–5CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologySun Yat-sen UniversityGuangzhouChina
  2. 2.Guangdong Engineering Technology Research Centre for Advanced Thermal Control Material and System Integration (ATCMSI)GuangzhouChina

Personalised recommendations