Skip to main content
Log in

Design and analysis of Salisbury screens and Jaumann absorbers for solar radiation absorption

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Two types of resonance absorbers, i.e., Salisbury screens and Jaumann absorbers are systematically investigated in solar radiation absorption. Salisbury screen is a metal-dielectric-metal structure which overcomes the drawback of bulky thickness for solar spectrum. Such structures have a good spectral selective absorption property, which is also insensitive to incident angles and polarizations. To further broaden absorption bandwidth, more metal and dielectric films are taken in the structure to form Jaumann absorbers. To design optimized structural parameters, the admittance matching equations have been derived in this paper to give good initial structures, which are valuable for the following optimization. Moreover, the analysis of admittance loci has been conducted to directly show the effect of each layer on the spectral absorptivity, and then the effect of thin films is well understood. Since the fabrication of these layered absorbers is much easier than that of other nanostructured absorbers, Salisbury screen and Jaumann absorbers have a great potential in large-area applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao H, Ruan X. Absorption spectra and electron-vibration coupling of Ti: Sapphire from first principles. Journal of Heat Transfer, 2016, 138(4): 042702

    Article  Google Scholar 

  2. Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402

    Article  Google Scholar 

  3. Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213

    Article  Google Scholar 

  4. Wang L P, Zhang Z M. Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics. Applied Physics Letters, 2012, 100(6): 063902

    Article  Google Scholar 

  5. Wang H, Wang L. Perfect selective metamaterial solar absorbers. Optics Express, 2013, 21 Suppl 6(22): A1078–A1093

    Article  Google Scholar 

  6. Fang X, Zhao C Y, Bao H. Radiative behaviors of crystalline silicon nanowire and nanohole arrays for photovoltaic applications. Journal of Quantitative Spectroscopy & Radiative Transfer, 2014, 133(2): 579–588

    Article  Google Scholar 

  7. Fang X, Lou M, Bao H, Zhao C Y. Thin films with disordered nanohole patterns for solar radiation absorbers. Journal of Quantitative Spectroscopy & Radiative Transfer, 2015, 158: 145–153

    Article  Google Scholar 

  8. Feng R, Qiu J, Cao Y, Liu L, Ding W, Chen L. Wide-angle and polarization independent perfect absorber based on one-dimensional fabrication-tolerant stacked array. Optics Express, 2015, 23(16): 21023–21031

    Article  Google Scholar 

  9. Bai Y, Zhao L, Ju D, Jiang Y, Liu L. Wide-angle, polarizationindependent and dual-band infrared perfect absorber based on L-shaped metamaterial. Optics Express, 2015, 23(7): 8670–8680

    Article  Google Scholar 

  10. Hadley L N, Dennison D M. Reflection and transmission interference filters part I. theory. Journal of the Optical Society of America, 1947, 37(6): 451–465

    Article  Google Scholar 

  11. Hadley L N, Dennison D M. Reflection and transmission interference filters part II. experimental, comparison with theory, results. Journal of the Optical Society of America, 1948, 38(6): 483–496

    Article  Google Scholar 

  12. Phillip R W, Bleikolm A F. Optical coatings for document security. Applied Optics, 1996, 35(28): 5529–5534

    Article  Google Scholar 

  13. Berning P H, Turner A F. Induced transmission in absorbing films applied to band pass filter design. Journal of the Optical Society of America, 1957, 47(3): 230–239

    Article  Google Scholar 

  14. Kats M A, Blanchard R, Genevet P, Capasso F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nature Materials, 2013, 12(1): 20–24

    Article  Google Scholar 

  15. Wang Z, Luk T S, Tan Y, Ji D, Zhou M, Gan Q, Yu Z F. Tunnelingenabled spectrally selective thermal emitter based on flat metallic films. Applied Physics Letters, 2015, 106(10): 101104

    Article  Google Scholar 

  16. Lee B J, Zhang Z M. Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. Journal of Applied Physics, 2006, 100(6): 063529

    Article  Google Scholar 

  17. Wang L, Lee B, Wang X, Zhang Z. Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Perot resonance cavities. International Journal of Heat and Mass Transfer, 2015, 52(13): 3024–3031

    Google Scholar 

  18. Wang L P, Basu S, Zhang Z M. Direct measurement of thermal emission from a Fabry-Perot cavity resonator. Journal of Heat Transfer, 2012, 134(7): 072701

    Article  Google Scholar 

  19. Narayanaswamy A, Chen G. Thermal emission control with onedimensional metallodielectric photonic crystals. Physical Review B: Condensed Matter, 2004, 70(12): 125101

    Article  Google Scholar 

  20. Kats M A, Sharma D, Lin J, Genevet P, Blanchard R, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F. Ultra-thin perfect absorber employing a tunable phase change material. Applied Physics Letters, 2012, 101(22): 221101

    Article  Google Scholar 

  21. Shu S, Li Z, Li Y Y. Triple-layer Fabry-Perot absorber with nearperfect absorption in visible and near-infrared regime. Optics Express, 2013, 21(21): 25307–25315

    Article  Google Scholar 

  22. Li Z, Palacios E, Butun S, Kocer H, Aydin K. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Scientific Reports, 2015, 5(1): 15137

    Article  Google Scholar 

  23. Kocer H, Butun S, Li Z, Aydin K. Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities. Scientific Reports, 2015, 5(1): 8157

    Article  Google Scholar 

  24. Li Z, Butun S, Aydin K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics, 2015, 2(2): 183–188

    Article  Google Scholar 

  25. Yan M. Metal-insulator-metal light absorber: a continuous structure. Journal of Optics, 2013, 15(2): 025006

    Article  Google Scholar 

  26. You J B, Lee W J, Won D, Yu K. Multiband perfect absorbers using metal-dielectric films with optically dense medium for angle and polarization insensitive operation. Optics Express, 2014, 22(7): 8339–8348

    Article  Google Scholar 

  27. Brahmachari K, Ray M. Performance of admittance loci based design of plasmonic sensor at infrared wavelength. Optical Engineering, 2013, 52(8): 087112

    Article  Google Scholar 

  28. Brahmachari K, Ray M. Admittance loci based design of a nanobioplasmonic sensor and its performance analysis. Sensors and Actuators. B: Chemical, 2015, 208: 283–290

    Article  Google Scholar 

  29. Badsha M A, Jun Y C, Hwangbo C K. Admittance matching analysis of perfect absorption in unpatterned thin films. Optics Communications, 2014, 332(4): 206–213

    Article  Google Scholar 

  30. Palik E D. Handbook of Optical Constants of Solids. San Diego, CA: Academic Press, 1985

    Google Scholar 

  31. MacLeod H A. Thin-film Optical Filters. Boca Raton: CRC Press, 2017

    Google Scholar 

  32. Fang X, Zhao C Y. Unified analyses and optimization for achieving perfect absorption of layered absorbers with ultrathin films. International Journal of Heat and Mass Transfer, 2017, 111: 1098–1106

    Article  Google Scholar 

  33. Watjen J I, Bright T J, Zhang Z M, Muratore C, Voevodin A A. Spectral radiative properties of tungsten thin films in the infrared. International Journal of Heat and Mass Transfer, 2013, 61(6): 106–113

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Shanghai Key Fundamental Research (Grant No. 16JC1403200), National Natural Science Foundation of China (Grant Nos. 51636004 and 51476097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Zhao, C.Y. & Bao, H. Design and analysis of Salisbury screens and Jaumann absorbers for solar radiation absorption. Front. Energy 12, 158–168 (2018). https://doi.org/10.1007/s11708-018-0542-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-018-0542-6

Keywords

Navigation