Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator- based wind energy conversion system

  • Ridha Cheikh
  • Arezki Menacer
  • L. Chrifi-Alaoui
  • Said Drid
Research Article


In this paper, the method for the nonlinear control design of a permanent magnet synchronous generator based-wind energy conversion system (WECS) is proposed in order to obtain robustness against disturbances and harvest a maximum power from a typical stochastic wind environment. The technique overcomes both the problem of nonlinearity and the uncertainty of the parameter compared to such classical control designs based on traditional control techniques. The method is based on the differential geometric feedback linearization technique (DGT) and the Lyapunov theory. The results obtained show the effectiveness and performance of the proposed approach.


permanent magnet synchronous generator wind energy conversion system stochastic differential geometric feedback linearization maximum power point tracking Lyapunov robust control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harrabi N, Souissi M, Aitouche A, Chabaane M. Intelligent control of wind conversion system based on PMSG using T-S Fuzzy Scheme. International Journal of Renewable Energy Research, 2015, 5(4): 52–60Google Scholar
  2. 2.
    Emna M E, Adel K, Mimouni M F. The wind energy conversion system using PMSG controlled by vector control and SMC strategies. International Journal of Renewable Energy Research, 2013, 3(1): 41–50Google Scholar
  3. 3.
    Munteanu I, Bratcu A I, Cutululis N A, Ceang Ă E. Optimal Control of Wind Energy Systems: Toward a Global Approach. London: Springer, 2008Google Scholar
  4. 4.
    Yadaiah N, Ramana N V. Linearization of multi-machine power system: modeling and control—a survey. International Journal of Electrical Power and Energy Systems, 2007, 29(4): 297–311CrossRefGoogle Scholar
  5. 5.
    Ghasemi S, Tabesh A, Askari-Marnani J. Application of fractional calculus theory to robust controller design for wind turbine generators. IEEE Transactions on Energy Conversion, 2014, 29 (3): 780–787CrossRefGoogle Scholar
  6. 6.
    Tabesh A, Iravani R. On the application of the complex torque coefficients method to the analysis of torsional dynamics. IEEE Transactions on Energy Conversion, 2005, 20(2): 268–275CrossRefGoogle Scholar
  7. 7.
    Tabesh A, Iravani R. Frequency response analysis of torsional dynamics. IEEE Transactions on Power Systems, 2004, 19(3): 1430–1437CrossRefGoogle Scholar
  8. 8.
    Farmad M, Farhangi S, Gharehpetian G B, Afsharnia S. Nonlinear controller design for IPC using feedback linearization method. International Journal of Electrical Power & Energy Systems, 2013, 44(1): 778–785CrossRefGoogle Scholar
  9. 9.
    Boukhezzar B, Siguerdidjane H. Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Conversion and Management, 2009, 50(4): 885–892CrossRefGoogle Scholar
  10. 10.
    Shi Z, Li X, Hu S. Direct feedback linearization based control in variable air volume air-conditioning system. Procedia Physics, 2012, 24(Part B): 1248–1254CrossRefGoogle Scholar
  11. 11.
    Bodson M, Chiasson J. Differential-geometric methods for control of electric motors. International Journal of Robust and Nonlinear Control, 1998, 8(11): 923–954MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Tailor M R, Bhathawala P H. Linearization of nonlinear differential equation by Taylor’s series expansion and use of Jacobian linearization process. International Journal of Theoretical and Applied Science, 2011, 4(1): 36–38Google Scholar
  13. 13.
    Jouybari-Moghaddam H, Hosseinian S H, Vahidi B. Grid reconnection detection for synchronous distributed generators in stand-alone operation. International Transactions on Electrical Energy Systems, 2015, 25(1): 138–154CrossRefGoogle Scholar
  14. 14.
    Akhrif O, Okou F A, Dessaint L A, Champagne R. Application of a multivariable feedback linearization scheme for rotor angle stability and voltage regulation of power systems. IEEE Transactions on Power Systems, 1999, 14(2): 620–628CrossRefGoogle Scholar
  15. 15.
    Lu Q, Sun Y Z. Nonlinear stabilizing control of multi machine systems. IEEE Transactions on Power Systems, 1988, 4(1): 36–38Google Scholar
  16. 16.
    Hunt L R. Su R, Meyer G. Design for multi-input nonlinear systems in differential geometric control theory. Progress in Mathematics, 1982, 27: 268–298Google Scholar
  17. 17.
    Isodori A. Nonlinear Control Systems. 3rd ed. Berlin: Springer-Verlag, 1995CrossRefGoogle Scholar
  18. 18.
    Beschi M, Berenguel M, Visioli A, Guzmán J L, Yebra L J. Implementation of feedback linearization GPC control for a solar furnace. Journal of Process Control, 2013, 23(10): 1545–1554CrossRefMATHGoogle Scholar
  19. 19.
    Yuan X, Chen Z, Yuan Y, Huang Y, Li X, Li W. Sliding mode controller of hydraulic generator regulating system based on the input/output feedback linearization method. Mathematics and Computers in Simulation, 2016, 119(C): 18–34MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mahboub M A, Drid S, Sid M A, Cheikh R. Robust direct power control based on the Lyapunov theory of a grid-connected brushless doubly fed induction generator. Frontiers in Energy, 2016, 10(3): 298–307CrossRefGoogle Scholar
  21. 21.
    Zarchi H A, Arab Markadeh Gh R, Soltani J. Direct torque and flux regulation of synchronous reluctance motor drives based on input–output feedback linearization. Energy Conversion and Management, 2010, 14(1): 71–80CrossRefGoogle Scholar
  22. 22.
    Bouzidi M, Benaissa A, Barkat S. Hybrid direct power/current control using feedback linearization of three-level four-leg voltage source shunt active power filter. International Journal of Electrical Power and Energy Systems, 2014, 61: 629–646CrossRefGoogle Scholar
  23. 23.
    Mehrasa M, Pouresmaeil E, Akorede M F, Jorgensen B N, Catalão J P S. Multilevel converter control approach of active power filter for harmonics elimination in electric grids. Energy, 2015, 84: 722–731CrossRefGoogle Scholar
  24. 24.
    Alizadeh M, Kojori S S. Augmenting effectiveness of control loops of a PMSG (permanent magnet synchronous generator) based wind energy conversion system by a virtually adaptive PI (proportional integral) controller. Energy, 2015, 91: 610–629CrossRefGoogle Scholar
  25. 25.
    Drid S, Tadjine M, Nait-Said M S. Robust backstepping vector control for the doubly fed induction motor. IET Control Theory & Applications, 2007, 1(4): 861–868MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mehrasa M, Pouresmaeil E, Zabihi S, Rodrigues E M G, Catalão J P S. A control strategy for the stable operation of shunt active power filters in power grids. Energy, 2016, 96: 325–334CrossRefGoogle Scholar
  27. 27.
    Phan D C, Yamamoto S. Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking. Energy, 2016, 111: 377–388CrossRefGoogle Scholar
  28. 28.
    Cheikh R, Menacer A, Drid S. Robust control based on the Lyapunov theory of a grid-connected doubly fed induction generator. Frontiers in Energy, 2013, 7(2): 191–196CrossRefGoogle Scholar
  29. 29.
    Bianchi F D. Wind Turbine Control Systems: Principles, Modeling and Gain Scheduling Design. London: Springer-Verlag, 2007CrossRefGoogle Scholar
  30. 30.
    Nguyen H M, Naidu D S. Direct fuzzy adaptive control for standalone wind energy conversion systems. In: Proceedings of the World Congress on Engineering and Computer Science, 2012, San Francisco, USAGoogle Scholar
  31. 31.
    Nichita C. Study and development of structures and digital control laws for the realization of 3 kWwind turbine simulator. Dissertation for the Doctoral Degree. France: Université du Havre, 1995 (in French)Google Scholar
  32. 32.
    Welfonder E, Neifer R, Spanner M. Development and experimental identification of dynamic models for wind turbines. Control Engineering Practice, 1997, 5(1): 63–73CrossRefGoogle Scholar
  33. 33.
    Chapman JW, IIic MD, King C A, Eng L, Kaufman H. Stabilizing a multi machine power system via decentralized feedback linearizing excitation control. IEEE Transactions on Power Systems, 1993, 8 (3): 830–839CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ridha Cheikh
    • 1
    • 2
    • 3
  • Arezki Menacer
    • 1
  • L. Chrifi-Alaoui
    • 2
  • Said Drid
    • 4
  1. 1.Department of Electrical Engineering LGEB LaboratoryBiskra UniversityBiskraAlgeria
  2. 2.Laboratory of Innovative Technology (LTI)University of Picardie Jules Verne, IUT de l’AisneCuffiesFrance
  3. 3.Unité de Développement des Equipements Solaires, UDESCentre de Développement des Energies RenouvelablesTipazaAlgeria
  4. 4.LSPIE Laboratory, Department of Electrical EngineeringUniversity of Batna2Rue Chahid Med El-Hadi BoukhlofAlgeria

Personalised recommendations