Frontiers in Energy

, Volume 12, Issue 1, pp 169–177 | Cite as

Effect of light scattering on the performance of a direct absorption solar collector

Research Article

Abstract

Recently, a solar thermal collector often employs nanoparticle suspension to absorb the solar radiation directly by a working fluid as well as to enhance its thermal performance. The collector efficiency of a direct absorption solar collector (DASC) is very sensitive to optical properties of the working fluid, such as absorption and scattering coefficients. Most of the existing studies have neglected particle scattering by assuming that the size of nanoparticle suspension is much smaller than the wavelength of solar radiation (i.e., Rayleigh scattering is applicable). If the nanoparticle suspension is made of metal, however, the scattering cross-section of metallic nanoparticles could be comparable to their absorption cross-section depending on the particle size, especially when the localized surface plasmon (LSP) is excited. Therefore, for the DASC utilizing a plasmonic nanofluid supporting the LSP, light scattering from metallic particle suspension must be taken into account in the thermal analysis. The present study investigates the scattering effect on the thermal performance of the DASC employing plasmonic nanofluid as a working fluid. In the analysis, the Monte Carlo method is employed to numerically solve the radiative transfer equation considering the volume scattering inside the nanofluid. It is found that the light scattering can improve the collector performance if the scattering coefficient of nanofluid is carefully engineered depending on its value of the absorption coefficient.

Keywords

direct absorption solar collector plasmonic nanofluid light scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Basic Science Research Program (NRF-2015R1A2A1A10055060) and Pioneer Research Center Program (NRF-2013M3C1A3063046) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning.

References

  1. 1.
    Steinfeld A. Solar thermochemical production of hydrogen–a review. Solar Energy, 78(5), 2005, 78(5): 603–615CrossRefGoogle Scholar
  2. 2.
    Thirugnanasambandam M, Iniyan S, Goic R. A review of solar thermal technologies. Renewable & Sustainable Energy Reviews, 2010, 14(1): 312–322CrossRefGoogle Scholar
  3. 3.
    Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies. Renewable & Sustainable Energy Reviews, 2011, 15 (3): 1625–1636CrossRefGoogle Scholar
  4. 4.
    Zhang H L, Baeyens J, Degrève J, Cacères G. Concentrated solar power plants: review and design methodology. Renewable & Sustainable Energy Reviews, 2013, 22: 466–481CrossRefGoogle Scholar
  5. 5.
    Lenel U, Mudd P. A review of materials for solar heating systems for domestic hot water. Solar Energy, 1984, 32(1): 109–120CrossRefGoogle Scholar
  6. 6.
    Fisch M, Guigas M, Dalenbäck J. A review of large-scale solar heating systems in Europe. Solar Energy, 1998, 63(6): 355–366CrossRefGoogle Scholar
  7. 7.
    Tian Y, Zhao C Y. A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy, 2013, 104(4): 538–553CrossRefGoogle Scholar
  8. 8.
    Duffie J A, Beckman W A, Mcgowan J. Solar engineering of thermal processes. Journal of Solar Energy Engineering, 1994, 116 (1): 549CrossRefGoogle Scholar
  9. 9.
    Hewakuruppu Y L, Taylor R A, Tyagi H, Khullar V, Otanicar T, Coulombe S, Hordy N. Limits of selectivity of direct volumetric solar absorption. Solar Energy, 2015, 114: 206–216CrossRefGoogle Scholar
  10. 10.
    Minardi J E, Chuang H N. Performance of a “black” liquid flat-plate solar collector. Solar Energy, 1975, 17(3): 179–183CrossRefGoogle Scholar
  11. 11.
    Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 2005, 100(1): 1–11CrossRefGoogle Scholar
  12. 12.
    Medintz I L, Uyeda H T, Goldman E R, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 2005, 4(6): 435–446CrossRefGoogle Scholar
  13. 13.
    Yu W, France D M, Routbort J L, Choi S U. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Engineering, 2008, 29(5): 432–460CrossRefGoogle Scholar
  14. 14.
    Taylor R A, Phelan P E, Otanicar T P, Adrian R, Prasher R. Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Research Letters, 2011, 6(1): 225CrossRefGoogle Scholar
  15. 15.
    Bohren C F, Huffman D R. Absorption and scattering of light by small particles (Wiley, New York). Optics & Laser Technology, 1998, 31(1): 328–328Google Scholar
  16. 16.
    Otanicar T P, Phelan P E, Prasher R S, Rosengarten G, Taylor R A. Nanofluid-based direct absorption solar collector. Journal of Renewable and Sustainable Energy, 2010, 2(3): 033102CrossRefGoogle Scholar
  17. 17.
    Xuan Y, Duan H, Li Q. Enhancement of solar energy absorption using a plasmonicnanofluid based on TiO2/Ag composite nanoparticles. RSC Advances, 2014, 4(31): 16206–16213CrossRefGoogle Scholar
  18. 18.
    Chen M, He Y, Zhu J, Shuai Y, Jiang B, Huang Y. An experimental investigation on sunlight absorption characteristics of silver nanofluids. Solar Energy, 2015, 115(12): 85–94CrossRefGoogle Scholar
  19. 19.
    Gupta H K, Agrawal G D, Mathur J. An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector. Solar Energy, 2015, 118: 390–396CrossRefGoogle Scholar
  20. 20.
    Karami M, Akhavan-Bahabadi M, Delfani S, Raisee M. Experimental investigation of CuO nanofluid-based Direct Absorption Solar Collector for residential applications. Renewable & Sustainable Energy Reviews, 2015, 52: 793–801CrossRefGoogle Scholar
  21. 21.
    Jeon J, Park S, Lee B J. Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid. Solar Energy, 2016, 132: 247–256CrossRefGoogle Scholar
  22. 22.
    Tyagi H, Phelan P, Prasher R. Predicted efficiency of a lowtemperature nanofluid-based direct absorption solar collector. Journal of Solar Energy Engineering, 2009, 131(4): 041004CrossRefGoogle Scholar
  23. 23.
    Veeraragavan A, Lenert A, Yilbas B, Al-Dini S, Wang E N. Analytical model for the design of volumetric solar flow receivers. International Journal of Heat and Mass Transfer, 2012, 55(4): 556–564CrossRefMATHGoogle Scholar
  24. 24.
    Cregan V, Myers T G. Modelling the efficiency of a nanofluid direct absorption solar collector. International Journal of Heat and Mass Transfer, 2015, 90: 505–514CrossRefGoogle Scholar
  25. 25.
    Gorji T B, Ranjbar A A. Geometry optimization of a nanofluidbased direct absorption solar collector using response surface methodology. Solar Energy, 2015, 122: 314–325CrossRefGoogle Scholar
  26. 26.
    Liu B J, Lin K Q, Hu S, Wang X, Lei Z C, Lin H X, Ren B. Extraction of absorption and scattering contribution of metallic nanoparticles toward rational synthesis and application. Analytical Chemistry, 2015, 87(2): 1058–1065CrossRefGoogle Scholar
  27. 27.
    Jain P K, Lee K S, El-Sayed I H, El-Sayed M A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. Journal of Physical Chemistry B, 2006, 110(14): 7238–7248CrossRefGoogle Scholar
  28. 28.
    Rativa D, Gómez-Malagón L A. Solar radiation absorption of nanofluids containing metallic nanoellipsoids. Solar Energy, 2015, 118: 419–425CrossRefGoogle Scholar
  29. 29.
    Wu Y, Zhou L, Du X, Yang Y. Optical and thermal radiative properties of plasmonic nanofluids containing core–shell composite nanoparticles for efficient photothermal conversion. International Journal of Heat and Mass Transfer, 2015, 82: 545–554CrossRefGoogle Scholar
  30. 30.
    Lee B J, Park K, Walsh T, Xu L. Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption. Journal of Solar Energy Engineering, 2012, 134(2): 021009CrossRefGoogle Scholar
  31. 31.
    Kalogirou S A. Solar thermal collectors and applications. Progress in Energy and Combustion Science, 2004, 30(3): 231–295CrossRefGoogle Scholar
  32. 32.
    Howell J R. The Monte Carlo method in radiative heat transfer. Journal of Heat Transfer, 1998, 120(3): 547–560CrossRefGoogle Scholar
  33. 33.
    Weller H G, Tabor G, Jasak H, Fureby C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 1998, 12(6): 620–631CrossRefGoogle Scholar
  34. 34.
    Qin C, Kang K, Lee I, Lee B J. Optimization of a direct absorption solar collector with blended plasmonic nanofluids. Solar Energy, 2017, 150: 512–520CrossRefGoogle Scholar
  35. 35.
    Das S K, Choi S U, Yu W, Pradeep T. Nanofluids: Science and Technology. Hoboken: John Wiley & Sons, 2007CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea

Personalised recommendations