Frontiers in Energy

, Volume 12, Issue 1, pp 178–184 | Cite as

Realization of energy-saving glass using photonic crystals

Research Article
  • 13 Downloads

Abstract

This work successfully developed an energysaving glass with wavelength selectivity. The glass is composed of a SiO2 substrate and two layers of threedimensional photonic crystals. Each crystal is composed of identical and transparent polystyrene spheres after their self-assembling. The glass then possesses dual photonic band gaps in the near-infrared region to suppress penetration of thermal radiation. Experimental results show that the energy-saving glass decreases temperature increment in a mini-house. Moreover, the temperature after thermal equilibrium is lower than that inside a counterpart using ordinary glass.

Keywords

energy-saving glass photonic crystals polystyrene spheres self-assembly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by “the Ministry of Science and Technology (MOST) in Taiwan (Grant Nos. MOST-104-2628- E-007-006-MY2 and MOST-105-3113-E-006-002).”

References

  1. 1.
    Incropera F P, Dewitt D P, Bergman T L, Lavine A S. Foundations of Heat Transfer. 6th ed. Hoboken: Wiley, 2013Google Scholar
  2. 2.
    Iqbal M. An Introduction to Solar Radiation. Amsterdam: Elsevier, 2012Google Scholar
  3. 3.
    Kiani G I, Karlsson A, Olsson L, Esselle K P. Glass characterization for designing frequency selective surfaces to improve transmission through energy saving glass windows. In: Asia-Pacific Microwave Conference 2007 (APMC 2007). Bangkok, Thailand, 2007, 4554974Google Scholar
  4. 4.
    Vasiliev M, Alghamedi R, Nur-E-Alam M, Alameh K. Photonic microstructures for energy-generating clear glass and net-zero energy buildings. Scientific Reports, 2016, 6(1): 31831CrossRefGoogle Scholar
  5. 5.
    Ferrara M, Castaldo A, Esposito S, D’Angelo A, Guglielmo A, Antonaia A. AlN-Ag based low-emission sputtered coatings for high visible transmittance window. Surface and Coatings Technology, 2016, 295: 2–7CrossRefGoogle Scholar
  6. 6.
    Liu Z, Xu W, Lin A, He T, Lin F. Deposition of NaGd(WO4)2:Eu3+/Bi3+ films on glass substrates and potential applications in white light emitting diodes. Energy and Building, 2016, 113: 9–14CrossRefGoogle Scholar
  7. 7.
    Ho C C, Chen Y B, Shih F Y. Tailoring broadband radiative properties of glass with silver nano-pillars for saving energy. International Journal of Thermal Sciences, 2016, 102: 17–25CrossRefGoogle Scholar
  8. 8.
    Fu C, Zhang Z M. Thermal radiative properties of metamaterials and other nanostructured materials: a review. Frontiers of Energy and Power Engineering in China, 2009, 3(1): 11–26CrossRefGoogle Scholar
  9. 9.
    Huang C L, Ho C C, Chen Y B. Development of an energy-saving glass using two-dimensional periodic nano-structures. Energy and Building, 2015, 86: 589–594CrossRefGoogle Scholar
  10. 10.
    Madani A, Roshan Entezar S. Optical properties of one-dimensional photonic crystals containing graphene sheets. Physica B, Condensed Matter, 2013, 431: 1–5CrossRefGoogle Scholar
  11. 11.
    Englund D, Fattal D, Waks E, Solomon G, Zhang B, Nakaoka T, Arakawa Y, Yamamoto Y, Vucković J. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Physical Review Letters, 2005, 95(1): 013904CrossRefGoogle Scholar
  12. 12.
    Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20): 2059–2062CrossRefGoogle Scholar
  13. 13.
    John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58(23): 2486–2489CrossRefGoogle Scholar
  14. 14.
    Kondo T, Hirano S, Yanagishita T, Nguyen N T, Schmuki P, Masuda H. Two-dimensional photonic crystals based on anodic porous TiO2 with ideally ordered hole arrangement. Applied Physics Express, 2016, 9(10): 102001CrossRefGoogle Scholar
  15. 15.
    Egen M, Voss R, Griesebock B, Zentel R, Romanov S, Torres C S. Heterostructures of polymer photonic crystal films. Chemistry of Materials, 2003, 15(20): 3786–3792CrossRefGoogle Scholar
  16. 16.
    Seelig E W, Tang B, Yamilov A, Cao H, Chang R P H. Selfassembled 3D photonic crystals from ZnO colloidal spheres. Materials Chemistry and Physics, 2003, 80(1): 257–263CrossRefGoogle Scholar
  17. 17.
    Lash M H, Fedorchak M V, Little S R, McCarthy J J. Fabrication and characterization of non-Brownian particle-based crystals. Langmuir, 2015, 31(3): 898–905CrossRefGoogle Scholar
  18. 18.
    Deotare P B, Kogos L C, Bulu I, Loncar M. Photonic crystal nanobeam cavities for tunable filter and router applications. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(2): 3600210CrossRefGoogle Scholar
  19. 19.
    Goyal A K, Dutta H S, Pal S. Recent advances and progress in photonic crystal-based gas sensors. Journal of Physics D, Applied Physics, 2017, 50(20): 203001CrossRefGoogle Scholar
  20. 20.
    Wehrspohn R B, Schweizer S L, Gesemann B, Pergande D, Geppert T M, Moretton S, Lambrecht A. Macroporous silicon and its application in sensing. Comptes Rendus Chimie, 2013, 16(1): 51–58CrossRefGoogle Scholar
  21. 21.
    Florescu M, Lee H, Stimpson A J, Dowling J. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals. Physical Review A, 2005, 72(3): 033821CrossRefGoogle Scholar
  22. 22.
    Luan P G, Chen C C, eds. Photonic Cystals. 2nd ed. Taipei: Wunan, 2010 (in Chinese)Google Scholar
  23. 23.
    Prather D W, Shi S, Sharkawy A, Murakowski J, Schneider G J. Photonic Crystals Theory, Applications, and Fabrication. Hoboken: Wiley, 2009Google Scholar
  24. 24.
    Miklyaev Y V, Meisel D C, Blanco A, von Freymann G, Busch K, Koch W, Enkrich C, Deubel M, Wegener M. Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations. Applied Physics Letters, 2003, 82(8): 1284–1286CrossRefGoogle Scholar
  25. 25.
    Crippa M, Bianchi A, Cristofori D, D’Arienzo M, Merletti F, Morazzoni F, Scotti R, Simonutti R. High dielectric constant rutile–polystyrene composite with enhanced percolative threshold. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2013, 1(3): 484–492CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringCheng Kung UniversityTainanChina
  2. 2.Department of Power Mechanical EngineeringTsingHua UniversityHsinchuChina

Personalised recommendations