Frontiers in Energy

, Volume 12, Issue 1, pp 127–136 | Cite as

Largely reduced cross-plane thermal conductivity of nanoporous In0.1Ga0.9N thin films directly grown by metal organic chemical vapor deposition

  • Dongchao Xu
  • Quan Wang
  • Xuewang Wu
  • Jie Zhu
  • Hongbo Zhao
  • Bo Xiao
  • Xiaojia Wang
  • Xiaoliang Wang
  • Qing Hao
Research Article


In recent year, nanoporous Si thin films have been widely studied for their potential applications in thermoelectrics, in which high thermoelectric performance can be obtained by combining both the dramatically reduced lattice thermal conductivity and bulk-like electrical properties. Along this line, a high thermoelectric figure of merit (ZT) is also anticipated for other nanoporous thin films, whose bulk counterparts possess superior electrical properties but also high lattice thermal conductivities. Numerous thermoelectric studies have been carried out on Si-based nanoporous thin films, whereas cost-effective nitrides and oxides are not systematically studied for similar thermoelectric benefits. In this work, the cross-plane thermal conductivities of nanoporous In0.1Ga0.9N thin films with varied porous patterns were measured with the time-domain thermoreflectance technique. These alloys are suggested to have better electrical properties than conventional Si x Ge1–x alloys; however, a high ZT is hindered by their intrinsically high lattice thermal conductivity, which can be addressed by introducing nanopores to scatter phonons. In contrast to previous studies using dry-etched nanopores with amorphous pore edges, the measured nanoporous thin films of this work are directly grown on a patterned sapphire substrate to minimize the structural damage by dry etching. This removes the uncertainty in the phonon transport analysis due to amorphous pore edges. Based on the measurement results, remarkable phonon size effects can be found for a thin film with periodic 300-nm-diameter pores of different patterns. This indicates that a significant amount of heat inside these alloys is still carried by phonons with ~300 nm or longer mean free paths. Our studies provide important guidance for ZT enhancement in alloys of nitrides and similar oxides.


nanoporous film thermoelectrics phonon mean free path diffusive scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This material is based on research sponsored by Defense Advanced Research Agency (DARPA) under agreement number FA8650-15-1-7523 and US Air Force Office of Scientific Research under award number FA9550-16-1-0025. The US Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory (AFRL) and the DARPA or the US Government. X.W.W., J.Z., and X.J.W. would like to thank the supports from the National Science Foundation (NSF) through the University of Minnesota MRSEC under Award Number DMR-1420013 and from the Legislative-Citizen Commission on Minnesota Resources (LCCMR).


  1. 1.
    Johnson W, Piner E L. GaN HEMT Technology. Berlin: Springer Berlin Heidelberg, 2012CrossRefGoogle Scholar
  2. 2.
    Wu Y R, Singh J. Transient study of self-heating effects in AlGaN/GaN HFETs: consequence of carrier velocities, temperature, and device performance. Journal of Applied Physics, 2007, 101(11): 113712CrossRefGoogle Scholar
  3. 3.
    Rosker M, Bozada C, Dietrich H, Hung A, Via D, Binari S, Vivierios E, Cohen E, Hodiak J. The DARPA wide band gap semiconductors for RF applications (WBGS-RF) program: Phase II results. In: CS MANTECH Conference. Tampa, Florida, USA, 2009Google Scholar
  4. 4.
    Lee H, Agonafer D D, Won Y, Houshmand F, Gorle C, Asheghi M, Goodson K. Thermal modeling of extreme heat flux microchannel coolers for GaN-on-SiC semiconductor devices. Journal of Electronic Packaging, 2016, 138(1): 010907CrossRefGoogle Scholar
  5. 5.
    Calame J P, Myers R E, Binari S C, Wood F N, Garven M. Experimental investigation of microchannel coolers for the high heat flux thermal management of GaN-on-SiC semiconductor devices. International Journal of Heat and Mass Transfer, 2007, 50(23–24): 4767–4779CrossRefGoogle Scholar
  6. 6.
    Yan Z, Liu G, Khan J M, Balandin A A. Graphene quilts for thermal management of high-power GaN transistors. Nature Communications, 2012, 3(3): 199–202Google Scholar
  7. 7.
    Tsurumi N, Ueno H, Murata T, Ishida H, Uemoto Y, Ueda T, Inoue K, Tanaka T. AlN passivation over AlGaN/GaN HFETs for surface heat spreading. IEEE Transactions on Electron Devices, 2010, 57 (5): 980–985CrossRefGoogle Scholar
  8. 8.
    Liu W, Balandin A A. Thermoelectric effects in wurtzite GaN and AlxGa1-xN alloys. Journal of Applied Physics, 2005, 97(12): 123705CrossRefGoogle Scholar
  9. 9.
    Pantha B N, Dahal R, Li J, Lin J Y, Jiang H X, Pomrenke G. Thermoelectric properties of In0.3Ga0.7N alloys. Journal of Electronic Materials, 2009, 38(7): 1132–1135CrossRefGoogle Scholar
  10. 10.
    Sztein A, Bowers J E, DenBaars S P, Nakamura S. Polarization field engineering of GaN/AlN/AlGaN superlattices for enhanced thermoelectric properties. Applied Physics Letters, 2014, 104(4): 042106CrossRefGoogle Scholar
  11. 11.
    Sztein A, Haberstroh J, Bowers J E, Denbaars S P, Nakamura S. Calculated thermoelectric properties of InxGa1–xN, InxAl1–xN, and AlxGa1–xN. Journal of Applied Physics, 2013, 113(18): 183707CrossRefGoogle Scholar
  12. 12.
    Hurwitz E N, Asghar M, Melton A, Kucukgok B, Su L, Orocz M, Jamil M, Lu N, Ferguson I T. Thermopower study of GaN-based materials for next-generation thermoelectric devices and applications. Journal of Electronic Materials, 2011, 40(5): 513–517CrossRefGoogle Scholar
  13. 13.
    Goldsmid H J. Thermoelectric Refrigeration. New York: Plenum Press, 1964CrossRefGoogle Scholar
  14. 14.
    Pantha B N, Dahal R, Li J, Lin J Y, Jiang H X, Pomrenke G. Thermoelectric properties of InxGa1–xN alloys. Applied Physics Letters, 2008, 92(4): 042112CrossRefGoogle Scholar
  15. 15.
    Sztein A, Ohta H, Bowers J E, DenBaars S P, Nakamura S. High temperature thermoelectric properties of optimized InGaN. Journal of Applied Physics, 2011, 110(12): 123709CrossRefGoogle Scholar
  16. 16.
    Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E, Shi L. Nanoscale thermal transport. II. 2003–2012. Applied Physics Reviews, 2014, 1(1): 011305CrossRefGoogle Scholar
  17. 17.
    Marconnet A M, Asheghi M, Goodson K E. From the casimir limit to phononic crystals: 20 years of phonon transport studies using silicon-on-insulator technology. Journal of Heat Transfer, 2013, 135 (6): 061601–1/10CrossRefGoogle Scholar
  18. 18.
    Lim J, Wang H T, Tang J, Andrews S C, So H, Lee J, Lee D H, Russell T P, Yang P. Simultaneous thermoelectric property measurement and incoherent phonon transport in holey silicon. ACS Nano, 2016, 10(1): 124–132CrossRefGoogle Scholar
  19. 19.
    Yu J K, Mitrovic S, Tham D, Varghese J, Heath J R. Reduction of thermal conductivity in phononic nanomesh structures. Nature Nanotechnology, 2010, 5(10): 718–721CrossRefGoogle Scholar
  20. 20.
    Tang J, Wang H T, Lee D H, Fardy M, Huo Z, Russell T P, Yang P. Holey silicon as an efficient thermoelectric material. Nano Letters, 2010, 10(10): 4279–4283CrossRefGoogle Scholar
  21. 21.
    Chen G. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford: Oxford University Press, 2005Google Scholar
  22. 22.
    Maldovan M. Narrow low-frequency spectrum and heat management by thermocrystals. Physical Review Letters, 2013, 110(2): 025902CrossRefGoogle Scholar
  23. 23.
    Song D, Chen G. Thermal conductivity of periodic microporous silicon films. Applied Physics Letters, 2004, 84(5): 687–689CrossRefGoogle Scholar
  24. 24.
    He Y, Donadio D, Lee J H, Grossman J C, Galli G. Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales. ACS Nano, 2011, 5(3): 1839–1844CrossRefGoogle Scholar
  25. 25.
    Ravichandran N K, Minnich A J. Coherent and incoherent thermal transport in nanomeshes. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(20): 205432CrossRefGoogle Scholar
  26. 26.
    Hopkins P E, Reinke C M, Su M F, Olsson R H III, Shaner E A, Leseman Z C, Serrano J R, Phinney L M, El-Kady I. Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Letters, 2011, 11(1): 107–112CrossRefGoogle Scholar
  27. 27.
    Lee J, Lim J, Yang P. Ballistic phonon transport in holey silicon. Nano Letters, 2015, 15(5): 3273–3279CrossRefGoogle Scholar
  28. 28.
    Tong T, Fu D, Levander A, Schaff W, Pantha B, Lu N, Liu B, Ferguson I, Zhang R, Lin J, Jiang H X, Wu J, Cahill D G. Suppression of thermal conductivity in InxGa1–xN alloys by nanometer-scale disorder. Applied Physics Letters, 2013, 102(12): 121906CrossRefGoogle Scholar
  29. 29.
    Hsiao T K, Chang H K, Liou S C, Chu M W, Lee S C, Chang C W. Observation of room-temperature ballistic thermal conduction persisting over 8.3 mm in SiGe nanowires. Nature Nanotechnology, 2013, 8(7): 534–538CrossRefGoogle Scholar
  30. 30.
    Hao Q, Xu D, Zhao H. Systematic studies of periodically nanoporous Si films for thermoelectric applications. MRS Proceedings, 2015, 1779, 27–32CrossRefGoogle Scholar
  31. 31.
    Kim B, Nguyen J, Clews P J, Reinke CM, Goettler D, Leseman Z C, El-Kady I, Olsson R. Thermal conductivity manipulation in single crystal silicon via lithographycally defined phononic crystals micro electro mechanical systems (MEMS). In: 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, 176–179CrossRefGoogle Scholar
  32. 32.
    Marconnet A M, Kodama T, Asheghi M, Goodson K E. Phonon conduction in periodically porous silicon nanobridges. Nanoscale and Microscale Thermophysical Engineering, 2012, 16(4): 199–219CrossRefGoogle Scholar
  33. 33.
    Nomura M, Nakagawa J, Sawano K, Maire J, Volz S. Thermal conduction in Si and SiGe phononic crystals explained by phonon mean free path spectrum. Applied Physics Letters, 2016, 109(17): 173104CrossRefGoogle Scholar
  34. 34.
    Alaie S, Goettler D F, Su M, Leseman Z C, Reinke C M, El-Kady I. Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature. Nature Communications, 2015, 6: 7228CrossRefGoogle Scholar
  35. 35.
    Jain A, Yu Y J, McGaughey A J. Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(19): 195301CrossRefGoogle Scholar
  36. 36.
    Choi K, Arita M, Arakawa Y. Selective-area growth of thin GaN nanowires by MOCVD. Journal of Crystal Growth, 2012, 357: 58–61CrossRefGoogle Scholar
  37. 37.
    Cahill D G. Analysis of heat flow in layered structures for timedomain thermoreflectance. Review of Scientific Instruments, 2004, 75(12): 5119–5122CrossRefGoogle Scholar
  38. 38.
    Krukowski S, Witek A, Adamczyk J, Jun J, Bockowski M, Grzegory I, Lucznik B, Nowak G, Wróblewski M, Presz A, Gierlotka S, Stelmach S, Palosz B, Porowski S, Zinn P. Thermal properties of indium nitride. Journal of Physics and Chemistry of Solids, 1998, 59(3): 289–295CrossRefGoogle Scholar
  39. 39.
    Leitner J, Strejc A, Sedmidubský D, Růžička K. High temperature enthalpy and heat capacity of GaN. Thermochimica Acta, 2003, 401 (2): 169–173CrossRefGoogle Scholar
  40. 40.
    Oh D W, Ravichandran J, Liang C W, Siemons W, Jalan B, Brooks C M, Huijben M, Schlom D G, Stemmer S, Martin L W, Majumdar A, Ramesh R, Cahill D G. Thermal conductivity as a metric for the crystalline quality of SrTiO3 epitaxial layers. Applied Physics Letters, 2011, 98(22): 221904CrossRefGoogle Scholar
  41. 41.
    Zhu J, Zhu Y, Wu X, Song H, Zhang Y, Wang X. Structure-thermal property correlation of aligned silicon dioxide nanorod arrays. Applied Physics Letters, 2016, 108(23): 231903CrossRefGoogle Scholar
  42. 42.
    Majumdar A. Microscale heat conduction in dielectric thin films. Journal of Heat Transfer, 1993, 115(1): 7–16CrossRefGoogle Scholar
  43. 43.
    Jeong C, Datta S, Lundstrom M. Thermal conductivity of bulk and thin-film silicon: a Landauer approach. Journal of Applied Physics, 2012, 111(9): 093708CrossRefGoogle Scholar
  44. 44.
    Hua Y C, Cao B Y. Cross-plane heat conduction in nanoporous silicon thin films by phonon Boltzmann transport equation and Monte Carlo simulations. Applied Thermal Engineering, 2017, 111: 1401–1408CrossRefGoogle Scholar
  45. 45.
    Hao Q, Xiao Y, Zhao H. Characteristic length of phonon transport within periodic nanoporous thin films and two-dimensional materials. Journal of Applied Physics, 2016, 120(6): 065101CrossRefGoogle Scholar
  46. 46.
    Liu W, Balandin A A. Thermal conduction in AlxGa1–xN alloys and thin films. Journal of Applied Physics, 2005, 97(7): 073710CrossRefGoogle Scholar
  47. 47.
    Dames C, Chen G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. Journal of Applied Physics, 2004, 95(2): 682–693CrossRefGoogle Scholar
  48. 48.
    Dames C, Chen G. Thermal conductivity of nanostructured thermoelectric materials. In: Rowe D M ed. Thermoelectrics Handbook: Macro to Nano. Boca Raton, USA: CRC Press 2005, 42:1–16Google Scholar
  49. 49.
    Toberer E S, Zevalkink A, Snyder G J. Phonon engineering through crystal chemistry. Journal of Materials Chemistry, 2011, 21(40): 15843–15852CrossRefGoogle Scholar
  50. 50.
    Klemens P G. Theory of thermal conductivity in solids. In: Tye R P ed. Thermal Conductivity. London: Academic Press, 1969, 1–68Google Scholar
  51. 51.
    Roufosse M, Klemens P G. Thermal conductivity of complex dielectric crystals. Physical Review B: Condensed Matter and Materials Physics, 1973, 7(12): 5379–5386CrossRefGoogle Scholar
  52. 52.
    Julian C L. Theory of heat conduction in rare-gas crystals. Physical Review, 1965, 137(1A): A128–A137MathSciNetCrossRefGoogle Scholar
  53. 53.
    Slack G A, Galginaitis S. Thermal conductivity and phonon scattering by magnetic impurities in CdTe. Physical Review, 1964, 133(1A): A253–A268CrossRefGoogle Scholar
  54. 54.
    Leibfried G, Schloemann E. Thermal conductivity of dielectric solids by a variational technique. Nachr Akad Wiss Goettingen, Math-Phys Kl, 2A. Math-Phys-Chem Abt, 1954, 23: 1366–1370Google Scholar
  55. 55.
    Freedman J P, Leach J H, Preble E A, Sitar Z, Davis R F, Malen J A. Universal phonon mean free path spectra in crystalline semiconductors at high temperature. Scientific Reports, 2013, 3(1): 2963CrossRefGoogle Scholar
  56. 56.
    Yang F, Dames C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(3): 035437CrossRefGoogle Scholar
  57. 57.
    Lindsay L, Broido D, Reinecke T. Thermal conductivity and large isotope effect in GaN from first principles. Physical Review Letters, 2012, 109(9): 095901CrossRefGoogle Scholar
  58. 58.
    Mion C, Muth J, Preble E, Hanser D. Accurate dependence of gallium nitride thermal conductivity on dislocation density. Applied Physics Letters, 2006, 89(9): 092123CrossRefGoogle Scholar
  59. 59.
    Tamura S I. Isotope scattering of dispersive phonons in Ge. Physical Review B: Condensed Matter and Materials Physics, 1983, 27(2): 858–866CrossRefGoogle Scholar
  60. 60.
    Ziman J M. Electrons and Phonons: the Theory of Transport Phenomena in Solids. Oxford: Oxford University Press, 2001CrossRefzbMATHGoogle Scholar
  61. 61.
    Klemens P G. The scattering of low-frequency lattice waves by static imperfections. Proceedings of the Physical Society. Section A, 1955, 68(12): 1113–1128CrossRefzbMATHGoogle Scholar
  62. 62.
    Wright A. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. Journal of Applied Physics, 1997, 82(6): 2833–2839CrossRefGoogle Scholar
  63. 63.
    Pantha B, Dahal R, Li J, Lin J, Jiang H, Pomrenke G. Thermoelectric properties of InxGa1–xN alloys. Applied Physics Letters, 2008, 92(4): 042112CrossRefGoogle Scholar
  64. 64.
    Regner K T, Sellan D P, Su Z, Amon C H, McGaughey A J, Malen J A. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nature Communications, 2013, 4: 1640CrossRefGoogle Scholar
  65. 65.
    Koh Y K, Cahill D G. Frequency dependence of the thermal conductivity of semiconductor alloys. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(7): 075207CrossRefGoogle Scholar
  66. 66.
    Kucukgok B, Wu X, Wang X, Liu Z, Ferguson I T, Lu N. The structural properties of InGaN alloys and the interdependence on the thermoelectric behavior. AIP Advances, 2016, 6(2): 025305CrossRefGoogle Scholar
  67. 67.
    Mingo N, Hauser D, Kobayashi N, Plissonnier M, Shakouri A. “Nanoparticle-in-Alloy” approach to efficient thermoelectrics: silicides in SiGe. Nano Letters, 2009, 9(2): 711–715CrossRefGoogle Scholar
  68. 68.
    Koh Y K, Singer S L, Kim W, Zide J M O, Lu H, Cahill D G, Majumdar A, Gossard A C. Comparison of the 3ω method and timedomain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors. Journal of Applied Physics, 2009, 105(5): 054303CrossRefGoogle Scholar
  69. 69.
    Jeżowski A, Danilchenko B, Boćkowski M, Grzegory I, Krukowski S, Suski T, Paszkiewicz T. Thermal conductivity of GaN crystals in 4.2–300K range. Solid State Communications, 2003, 128(2–3): 69–73CrossRefGoogle Scholar
  70. 70.
    Jung K, Cho M, Zhou M. Strain dependence of thermal conductivity of [0001]-oriented GaN nanowires. Applied Physics Letters, 2011, 98(4): 041909CrossRefGoogle Scholar
  71. 71.
    Hao Q, Zhao H, Xiao Y. Multi-length scale thermal simulations of GaN-on-SiC high electron mobility transistors. In: Zhang Y, He Y-L ed. Multiscale Thermal Transport in Energy Systems. Hauppauge. New York: Nova Science Publishers, 2016Google Scholar
  72. 72.
    Han Y J. Intrinsic thermal-resistive process of crystals: umklapp processes at low and high temperatures. Physical Review B: Condensed Matter and Materials Physics, 1996, 54(13): 8977–8980CrossRefGoogle Scholar
  73. 73.
    Dubey K, Misho R. Three-phonon scattering relaxation rate and phonon conductivity. Application to Mg2Ge. Physica Status Solidi. B, Basic Research, 1977, 84(1): 69–81CrossRefGoogle Scholar
  74. 74.
    Joshi Y, Verma G. Analysis of phonon conductivity: application to Si. Physical Review B: Condensed Matter and Materials Physics, 1970, 1(2): 750–755CrossRefGoogle Scholar
  75. 75.
    Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Materials, 2007, 6(2): 129–134CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Dongchao Xu
    • 1
  • Quan Wang
    • 2
  • Xuewang Wu
    • 3
  • Jie Zhu
    • 3
  • Hongbo Zhao
    • 1
  • Bo Xiao
    • 1
  • Xiaojia Wang
    • 3
  • Xiaoliang Wang
    • 2
  • Qing Hao
    • 1
  1. 1.Aerospace & Mechanical EngineeringUniversity of ArizonaTucsonUSA
  2. 2.Key laboratory of Semiconductor Materials Science, Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  3. 3.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations