Variabilities of carbonate δ13C signal in response to the late Paleozoic glaciations, Long’an, South China

Abstract

An integrated study of biostratigraphy, microfacies, and stable carbon isotope stratigraphy was carried out on the late Famennian-early Asselian carbonates of the Long’an section in Guangxi, South China. Stable carbon isotope studies in the Long’an section have revealed four major positive shifts of δ13C values in the Carboniferous strata in South China. The first shift occurred in the Siphonodella dasaibaensia zone in the Tournaisian, with an amplitude of 4.19‰. The second shift occurred near the Visean/Serpukhovian boundary, with an amplitude of 2.63‰. The third shift occurred in the Serpukhovian, with an amplitude of 3.95‰. The fourth shift occurred in the Kasimovian, with an amplitude of 3.69‰. Furthermore, there were several brief positive δ13C shifts during the late Famennian to early Tournaisian. All of these shifts can be well correlated globally, and each corresponds to sea-level regressions in South China and Euro-America, indicating increases in ocean primary productivity and global cooling events. Chronologically, the four major positive excursions of δ13C, together with several brief positive δ13C shifts that were observed during the late Famennian to the early Tournaisian, correspond to the well-accepted Glacial I, II, and III events.

This is a preview of subscription content, log in to check access.

References

  1. Bruckschen P, Oesmann S, Veizer J (1999). Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics. Chem Geol, 161(1–3): 127–163

    Article  Google Scholar 

  2. Buggisch W, Joachimski M M, Sevastopulo G, Morrow J R (2008). Mississippian δ13C carb and conodont apatite δ18O records—their relation to the Late Palaeozoic Glaciation. Palaeogeogr Palaeoclimatol Palaeoecol, 268(3–4): 273–292

    Article  Google Scholar 

  3. Buggisch W, Wang X D, Alekseev A S, Joachimski M M (2011). Carboniferous-Permian carbon isotope stratigraphy of successions from China (Yangtze platform), USA (Kansas) and Russia (Moscow Basin and Urals). Palaeogeogr Palaeoclimatol Palaeoecol, 301(1–4): 18–38

    Article  Google Scholar 

  4. Caputo M V (1985). Late Devonian glaciation in South America. Palaeogeogr Palaeoclimatol Palaeoecol, 51(1–4): 291–317

    Article  Google Scholar 

  5. Caputo M V, Crowell J C (1985). Migration of glacial centers across Gondwana during Paleozoic Era. Geol Soc Am Bull, 96(8): 1020–1036

    Article  Google Scholar 

  6. Chen J T, Montañez I P, Qi Y P, Wang X D, Wang Q L, Lin W (2016). Coupled sedimentary and δ13C records of late Mississippian platform-to-slope successions from South China: insight into δ13C chemostratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol, 448: 162–178

    Article  Google Scholar 

  7. Cohen K M, Finney S C, Gibbard P L (2013). The ISC international chronostratigraphic chart. Episodes, 36: 199–204

    Article  Google Scholar 

  8. Crowell J C (1978). Gondwana glaciation, cyclothems, continental positioning and climate change. Am J Sci, 278(10): 1345–1372

    Article  Google Scholar 

  9. Elrick M E, Read J F (1991). Cyclic ramp-to-basin carbonate deposits, Lower Mississippian, Wyoming, and Montana. J Sediment Petrol, 61: 1194–1224

    Google Scholar 

  10. Feng Z Z, Yang Y Q, Bao Z D (1998). Lithofacies Palaeogeography of the Carboiferous in South China. Beijing: Geological Publishing House

    Google Scholar 

  11. Flügel E (2010). Microfacies of Carbonate Rocks: Analisis, Interpretation and application. Berlin, Heidelberg: Springer-Verlag

    Google Scholar 

  12. Frakes L A, Francis J E, Syktus J I (1992). Climate Modes of the Phanerozoic. London: Cambridge University Press

    Google Scholar 

  13. Garzanti E, Sciunnach D (1997). Early Carboniferous onset of Gondwanian glaciation and Neo-tethyan rifting in South Tibet. Earth Planet Sci Lett, 148(1–2): 359–365

    Article  Google Scholar 

  14. González-Bonorino G (1992). Carboniferous glaciation in Gondwana: evidence for grounded marine ice and continental glaciation in southwestern Argentina. Palaeogeogr Palaeoclimatol Palaeoecol, 91(3–4): 363–375

    Article  Google Scholar 

  15. Grossman E L, Yancey T E, Jones T E, Bruckschen P, Chuvashov B, Mazzullo S J, Mii H (2008). Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: the isotopic record from low latitudes. Palaeogeogr Palaeoclimatol Palaeoecol, 268(3–4): 222–233

    Article  Google Scholar 

  16. Huang X, Aretz M, Zhang X H, Du Y S, Qie W K, Wen Q, Wang C N, Luan T F (2017). Pennsylvanian-early Permian palaeokarst development on the Yangtze Platform, South China, and implications for the regional sea-level history. Geol J, 53(4): 1241–1262

    Article  Google Scholar 

  17. Hudson J D (1975). Carbon isotopes and limestone cement. Geology, 3(1): 19–22

    Article  Google Scholar 

  18. Isaacson P E, Díaz-Martínez E, Grader G W, Kalvoda J, Babek O, Devuyst F X (2008). Late Devonian-earliest Mississippian glaciation in Gondwanaland and its biogeographic consequences. Palaeogeogr Palaeoclimatol Palaeoecol, 268(3–4): 126–142

    Article  Google Scholar 

  19. Isbell J L, Miller M F, Wolfe K L, Lenaker P A (2003). Timing of late Paleozoic glaciation in Gondwana: was glaciation responsible for the development of Northern hemisphere cyclothems? Spec Pap Geol Soc Am, 370: 5–24

    Google Scholar 

  20. Jiang G, Kennedy M J, Christie-Blick N (2003). Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 426(6968): 822–826

    Article  Google Scholar 

  21. Kabanov P B, Alekseev A S, Gibshman N B, Gabdullin R R, Bershov A V (2016). The upper Viséan—Serpukhovian in the type area for the serpukhovian stage (moscow basin, russia): part 1. sequences, disconformities, and biostratigraphic summary. Geol J, 51(2): 163–194

    Article  Google Scholar 

  22. Kaufman A J, Knoll A H (1995). Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res, 73(1–4): 27–49

    Article  Google Scholar 

  23. Kuang G D, Li J J, Zhong J, Su Y B, Tao Y B (1999). The Carboniferous in Guangxi. Wuhan: China University of Geosciences Press

    Google Scholar 

  24. Li J C, Kuang D Z, Zhang Z H, Hong Z Y (2011). Late Carboniferous—early Permian fusulinid biostratigraphy of Shunchang, Fujian province. Acta Micropalaeontologica Sin, 28(3): 309–315

    Article  Google Scholar 

  25. Li R F, Liu B P, Zhao C L (1996). Characteristics of cycle-sequence, carbon isotope features and glacio-eustasy of the Triticites zone in southern Guizhou. Acta Sedimentologica Sinica, 70(4): 342–350

    Google Scholar 

  26. Li R F, Liu B P, Zhao C L (1997). Correlation of Carboniferous depositional sequences on the Yangtze plate with other on a global scale. Acta Sedimentologica Sinica, 15(3): 23–28

    Google Scholar 

  27. Liu B P, Li R F, You D H (1994). Carboniferous sequence stratigraphy and glacio-eustasy of Triticites zone in southern Guizhou, China. Earth Sci J China U, 19: 553–564

    Google Scholar 

  28. Liu C G, Li G R, Wang D W, Liu Y L, Luo M X, Shao X M (2016). Middle—Upper Ordovician (Darriwilian—Early Katian) positive carbon isotope excursions in the northern Tarim Basin, Northwest China: implications for stratigraphic correlation and paleoclimate. J Earth Sci, 27(2): 317–328

    Article  Google Scholar 

  29. Liu C, Jarochowska E, Du Y S, Vachard D, Munnecke A (2017). Stratigraphical and δ13C records of Permo-Carboniferous platform carbonates, South China: responses to late Paleozoic icehouse climate and icehouse-greenhouse transition. Palaeogeogr Palaeoclimatol Palaeoecol, 474: 113–129

    Article  Google Scholar 

  30. Lin C M, Ling H F, Wang S J, Zhang S (2002). Evolution regularities of carbon and oxygen isotopes in Carboniferous marina carbonate rocks from Jiangsu and Anhui provinces. Geochimica, 31(5): 415–423

    Google Scholar 

  31. Löpez-Gamundí O R, Buatois L A (2010). Introduction: Late Paleozoic glacial events and postglacial transgressions in Gondwana. Geol Soc Am Bull, 468: 5–8

    Google Scholar 

  32. Magaritz M, Holser W T, Kirschvink J L (1986). Carbon-isotope events across the Precambrian/Cambrian boundary on the Siberian Platform. Nature, 320(6059): 258–259

    Article  Google Scholar 

  33. Marshall J D, Brenchley P J, Mason P, Wolff G A, Astini R A, Hints L, Meidla T (1997). Global carbon isotopic events associated with mass extinction and glaciation in the late Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol, 132(1–4): 195–210

    Article  Google Scholar 

  34. Matchen D L, Kammer T W (2006). Incised valley fill interpretation for Mississippian Black Hand Sandstone, Appalachian Basin, USA: implications for glacial eustasy at Kinderhookian-Osagean (Tn2–Tn3) boundary. Sediment Geol, 191(1–2): 89–113

    Article  Google Scholar 

  35. Ma Z L, Wang Y, Wang Q L, Hoshiki Y, Uene K, Qi Y P, Wang X D (2013). Biostratigraphy of the Bashlirian-Moscovian boundary interval at Luokun section in Guizhou, South China. Acta Palaeontologica Sinic, 52(4): 492–502

    Google Scholar 

  36. Mei M X, Li Z Y (2004). Sequence-stratigraphic succession and sedimentary-basin evolution from late Paleozoic to Triassic in the Yunnan-Guizhou-Guangxi region. Geoscience, 18: 555–563

    Google Scholar 

  37. Mei M X, Ma Y S, Deng J, Chu H M, Liu Z R, Zhang H (2005). Carboniferous to Permian sequence stratigraphic framework of the Yunnan-Guizhou-Guangxi basin and its adjacent areas and global correlation of third-order sea-level change. Geology in China, 32: 13–24

    Google Scholar 

  38. Mii H S, Grossman E L, Yancey T E (1999). Carboniferous isotope stratigraphies of North America: implications for Carboniferous paleoceanography and Mississippian glaciation. Geol Soc Am Bull, 111(7): 960–973

    Article  Google Scholar 

  39. Mii H S, Grossman E L, Yancey T E, Chuvashov B, Egorov A (2001). Isotopic records of brachiopod shells from the Russian Platform-evidence for the onset of mid-Carboniferous glaciation. Chem Geol, 175(1–2): 133–147

    Article  Google Scholar 

  40. Okuyucu C (2013). Fusulinid zonation of the Late Moscovian-Early Sakmarian sequences from the Taurides, southern Turkey. Neues Jahrb Geol Palaontol Abh, 268(3): 237–258

    Article  Google Scholar 

  41. Peng Y, Peng Y B, Lang X G, Ma H, Huang K, Li F, Shen B (2016). Marine carbon-sulfur biogeochemical cycles during the steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan basin, South China. J Earth Sci, 27(2): 242–254

    Article  Google Scholar 

  42. Qie W K, Liu J S, Chen J T, Wang X, Mii H, Zhang X, Huang X, Yao L, Algeo T J, Luo G (2015). Local overprints on the global carbonate δ13C signal in Devonian—Carboniferous boundary successions of South China. Palaeogeogr Palaeoclimatol Palaeoecol, 418: 290–303

    Article  Google Scholar 

  43. Qie W K, Zhang X H, Cai X F, Zhang Y (2007). Geobiological processes and the formation of hydrocarbon source rocks in the Carboniferous-Early Permian glacial period in South China. Earth Sci J China U, 32(6): 803–810

    Google Scholar 

  44. Qie W K, Zhang X H, Du Y S, Zhang Y (2010). Lower Carboniferous carbon isotope stratigraphy in South China: implications for the Late Paleozoic glaciation. Sci China Earth Sci, 40(11): 1533–1542

    Google Scholar 

  45. Qie W K, Zhang X H, Du Y S, Yang B, Ji W T, Luo G M (2014). Conodont biostratigraphy of Tournaisian shallow-water carbonates in central Guangxi, South China. Geobios, 47(6): 389–401

    Article  Google Scholar 

  46. Ross C A, Ross J R P (1988). Late Paleozoic transgressive-regressive deposition. SEPM Special Publication, 42: 227–247

    Google Scholar 

  47. Rygel M C, Fielding C R, Frank T D, Birgenheier L P (2008). The magnitude of Late Paleozoic glacioeustatic fluctuations: a synthesis. J Sediment Res, 78(8): 500–511

    Article  Google Scholar 

  48. Saltzman M R, González L A, Lohmann K C (2000). Earliest Carboniferous cooling step triggered by the Antler orogeny? Geology, 28(4): 347–350

    Article  Google Scholar 

  49. Saltzman M R (2002). Carbon and oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian—lower Osagean), western United States: implications for seawater chemistry and glaciation. Geol Soc Am Bull, 114(1):96–108

    Article  Google Scholar 

  50. Saltzman M R (2003). Late Paleozoic ice age: oceanic gateway or pCO2? Geology, 31(2): 151–154

    Article  Google Scholar 

  51. Saltzman M R, Thomas E (2012). Carbon isotope stratigraphy. In: Gradstein F, Ogg J, Schmitz M, Ogg G, eds. The Geologic Time Scale 2012. Boston: Elsevier, 221–246

    Google Scholar 

  52. Saltzman M R, Young S A (2005). Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology, 33(2): 109–112

    Article  Google Scholar 

  53. Shen J, Algeo T J, Hu Q, Zhang N, Zhou L, Xia WC, Xie S C, Feng Q L (2012). Negative C isotope excursions at the Permian-Triassic boundary linked to volcanism. Geology, 40(11): 963–966

    Article  Google Scholar 

  54. Shi Y K, Liu J R, Yang X N, Zhu L M (2009). Fusulinid faunas from the Datangian to Chihsian strata of the Zongdi section in Ziyun county, Guizhou province. Acta Micropalaeontologica Sin, 26(1): 1–30

    Google Scholar 

  55. Smith L B, Read J F (2000). Rapid onset of late Paleozoic glaciation on Gondwana: evidence from Upper Mississippian strata of the Midcontinent, United States. Geology, 28(3): 279–282

    Article  Google Scholar 

  56. Streel M, Caputo M V, Loboziak S, Melo J H G (2000). Late Frasnian-Famennian climates based on palynomorph analyses and the question of the Late Devonian glaciations. Earth Sci Rev, 52(1–3): 121–173

    Article  Google Scholar 

  57. Ueno K, Hayakawa N, Nakazawa T, Wang Y, Wang X D (2013). Pennsylvanian-Early Permian cyclothemic succession on the Yangtze carbonate platform, South China. Geol Soc Lond Spec Publ, 376(1): 235–267

    Article  Google Scholar 

  58. Veever J J, Powell C M (1987). Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional C sequences in Euramerica. Geol Soc Am Bull, 98(4): 475–487

    Article  Google Scholar 

  59. Wang J S, Jiang G Q, Xiao S H, Li Q, Wei Q (2008). Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in South China. Geology, 36(5): 345–350

    Google Scholar 

  60. Wang X D, Qie W K, Sheng Q Y, Qi Y P, Wang Y, Liao Z T, Shen S Z, Ueno K (2013). Carboniferous and Lower Permian sedimentological cycles and biotic events of South China. Geol Soc Lond Spec Publ, 376(1): 33–46

    Article  Google Scholar 

  61. Wynn T C, Read J F (2007). Carbon-oxygen isotope signal of Mississippian slope carbonates, Appalachians, USA: a complex response to climate-driven fourth-order glacio-eustasy. Palaeogeogr Palaeoclimatol Palaeoecol, 256(3–4): 254–272

    Article  Google Scholar 

  62. Yang X N (1989). The fusulinids zonation of Maping Formation in Yishan county, Guangxi autonomous region. Geoscience, 3(3): 297–307

    Google Scholar 

  63. Zhang L X, Zhou J P, Sheng J Z (2010). The Upper Carboniferous and Lower Permian Fusulinids from west Guizhou. Beijing: Science Press

    Google Scholar 

  64. Zhou J P (1991). Fusulinid zones from Maping Formation of Changmo, Longlin, Guangxi on Carboniferous—Permian boundary. Acta Palaeontologica Sin, 30(3): 396–409

    Google Scholar 

Download references

Acknowledgements

This paper has received both technical and financial supports respectively from the National Basic Research Program of China under the State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences (Wuhan) (No. KZ11K312), the National Natural Science Foundation of China (Grant No. 41702366) and the Fundamental Research Funds for the Central Universities (No. 3142018004)

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xionghua Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Zhang, X., Qie, W. et al. Variabilities of carbonate δ13C signal in response to the late Paleozoic glaciations, Long’an, South China. Front. Earth Sci. (2020). https://doi.org/10.1007/s11707-019-0781-9

Download citation

Keywords

  • carbon isotopes
  • Late Paleozoic Ice Age
  • Carboniferous
  • sea-level changes
  • global climate variation