Skip to main content
Log in

The relationships between urban-rural temperature difference and vegetation in eight cities of the Great Plains

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Interpreting the relationship between urban heat island (UHI) and urban vegetation is a basis for understanding the impacts of underlying surfaces on UHI. The calculation of UHI intensity (UHII) requires observations from paired stations in both urban and rural areas. Due to the limited number of paired meteorological stations, many studies have used remotely sensed land surface temperature, but these time-series land surface temperature data are often heavily affected by cloud cover and other factors. These factors, together with the algorithm for inversion of land surface temperature, lead to accuracy problems in detecting the UHII, especially in cities with weak UHII. Based on meteorological observations from the Oklahoma Mesonet, a world-class network, we quantified the UHII and trends in eight cities of the Great Plains, USA, where data from at least one pair of urban and rural meteorological stations were available. We examined the changes and variability in urban temperature, UHII, vegetation condition (as measured by enhanced vegetation index, EVI), and evapotranspiration (ET). We found that both UHI and urban cold islands (UCI) occurred among the eight cities during 2000–2014 (as measured by impervious surface area). Unlike what is generally considered, UHII in only three cities significantly decreased as EVI and ET increased (p<0.1), indicating that the UHI or UCI cannot be completely explained simply from the perspective of the underlying surface. Increased vegetative cover (signaled by EVI) can increase ET, and thereby effectively mitigate the UHI. Each study station clearly showed that the underlying surface or vegetation affects urban-rural temperature, and that these factors should be considered during analysis of the UHI effect over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argüeso D, Evans J P, Fita L, Bormann K J (2014). Temperature response to future urbanization and climate change. Clim Dyn, 42(7–8): 2183–2199

    Article  Google Scholar 

  • Bang C, Sabo J L, Faeth S H (2010). Reduced wind speed improves plant growth in a desert city. PLoS One, 5(6): e11061

    Article  Google Scholar 

  • Basara J B, Basara H G, Illston B G, Crawford K C (2010). The impact of the urban heat island during an intense heat wave in Oklahoma City. Adv Meteorol, 2010: 1–10

    Article  Google Scholar 

  • Bokaie M, Zarkesh M K, Arasteh P D, Hosseini A (2016). Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/Land Cover in Tehran. Sustainable Cities and Society, 23: 94–104

    Article  Google Scholar 

  • Brock F V, Crawford K C, Elliott R L, Cuperus G W, Stadler S J, Johnson H L, Eilts M D (1995). The Oklahoma Mesonet: a technical overview. J Atmos Ocean Technol, 12(1): 5–19

    Article  Google Scholar 

  • Brohan P, Kennedy J J, Harris I, Tett S F, Jones P D (2006). Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res Atmos, 111(D12D12106): D12106

    Article  Google Scholar 

  • Chandler T J (1976). Urban climatology and its relevance to urban design. WMO Tech, Note 149, WMO, Geneva

    Google Scholar 

  • Churkina G (2016). The role of urbanization in the global carbon cycle. Frontiers in Ecology and Evolution, 3, doi: 10.3389/fevo.2015.00144

  • Clinton N, Gong P (2013). MODIS detected surface urban heat islands and sinks: global locations and controls. Remote Sens Environ, 134: 294–304

    Article  Google Scholar 

  • Cui Y, Jiu J, Zhang X, Hu Y, Wang J (2012a). Modeling urban heat energy balance and temperature differences of different underlying surfaces. Geogr Res, 31(7): 1257–1268

    Google Scholar 

  • Cui Y, Liu J, Hu Y, Wang J, Kuang W (2012b). Modeling the radiation balance of different urban underlying surfaces. Chin Sci Bull, 57(9): 1046–1054

    Article  Google Scholar 

  • Cui Y, Liu J, Zhang X, Qin Y, Dong J (2015). Modeling urban sprawl effects on regional warming in Beijing-Tianjing-Tangshan urban agglomeration. Acta Ecol Sin, 35(4): 993–1003

    Google Scholar 

  • Cui Y, Xiao X, Zhang Y, Dong J, Qin Y, Doughty R, Zhang G, Wang J, Wu X, Qin Y, Zhou S, Joiner J, Moore B III (2017). Temporal consistency between gross primary production and solar-induced chlorophyll fluorescence in the ten most populous megacity areas over years. Sci Rep, 7(1): 14963

    Article  Google Scholar 

  • Cui Y, Xu X, Dong J, Qin Y (2016). Influence of urbanization factors on surface urban heat island intensity: a comparison of countries at different developmental phases. Sustainability, 8(8): 706

    Article  Google Scholar 

  • Dong J, Xiao X, Wagle P, Zhang G, Zhou Y, Jin C, Torn M S, Meyers T P, Suyker A E, Wang J, Yan H, Biradar C, Moore B III (2015). Comparison of four EVI-based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought. Remote Sens Environ, 162: 154–168

    Article  Google Scholar 

  • Eliasson I (1996). Urban nocturnal temperatures, street geometry and land use. Atmos Environ, 30(3): 379–392

    Article  Google Scholar 

  • Fang J, Zhu J, Yue C, Wang S, Zheng T (2018). Carbon Emissions from China and the World. Beijing: Science Press

    Google Scholar 

  • Golubiewski N E (2006). Urbanization increases grassland carbon pools: effects of landscaping in Colorado’s front range. Ecol Appl, 16(2): 555–571

    Article  Google Scholar 

  • Grimm N B, Faeth S H, Golubiewski N E, Redman C L, Wu J, Bai X, Briggs J M (2008). Global change and the ecology of cities. Science, 319(5864): 756–760

    Article  Google Scholar 

  • Guo G, Wu Z, Xiao R, Chen Y, Liu X, Zhang X (2015). Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landsc Urban Plan, 135: 1–10

    Article  Google Scholar 

  • Haashemi S, Weng Q, Darvishi A, Alavipanah S K (2016). Seasonal variations of the surface urban heat island in a semi-arid city. Remote Sens, 8(4): 352

    Article  Google Scholar 

  • Heusinkveld B G, Steeneveld G J, van Hove L W A, Jacobs C M J, Holtslag A A M (2014). Spatial variability of the Rotterdam urban heat island as influenced by urban land use. J Geophys Res Atmos, 119(2): 677–692

    Article  Google Scholar 

  • Hu L, Brunsell N A (2013). The impact of temporal aggregation of land surface temperature data for surface urban heat island (SUHI) monitoring. Remote Sens Environ, 134: 162–174

    Article  Google Scholar 

  • Hu X, Zhou W, Qian Y, Yu W (2017). Urban expansion and local landcover change both significantly contribute to urban warming, but their relative importance changes over time. Landsc Ecol, 32(4): 763–780

    Article  Google Scholar 

  • Hutyra L R, Duren R, Gurney K R, Grimm N, Kort E A, Larson E, Shrestha G (2014). Urbanization and the carbon cycle: current capabilities and research outlook from the natural sciences perspective. Earths Futur, 2(10): 473–495

    Article  Google Scholar 

  • Imhoff M L, Bounoua L, DeFries R, Lawrence W T, Stutzer D, Tucker C J, Ricketts T (2004). The consequences of urban land transformation on net primary productivity in the United States. Remote Sens Environ, 89(4): 434–443

    Article  Google Scholar 

  • ImhoffM L, Zhang P,Wolfe R E, Bounoua L (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens Environ, 114(3): 504–513

    Article  Google Scholar 

  • Jenerette G D, Harlan S L, Buyantuev A, Stefanov W L, Declet-Barreto J, Ruddell B L, Myint SW, Kaplan S, Li X (2016). Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ, USA. Landsc Ecol, 31(4): 745–760

    Article  Google Scholar 

  • Jones P, Lister D, Li Q (2008). Urbanization effects in large-scale temperature records, with an emphasis on China. J Geophys Res Atmos, 113(D16): D16122

    Article  Google Scholar 

  • Kalnay E, Cai M (2003). Impact of urbanization and land-use change on climate. Nature, 423(6939): 528–531

    Article  Google Scholar 

  • Kamarianakis Y, Li X, Turner B L II, Brazel A J (2017). On the effects of landscape configuration on summer diurnal temperatures in urban residential areas: application in Phoenix, AZ. Front Earth Sci, https://doi.org/10.1007/s11707-017-0678-4

    Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006). World map of the Köppen-Geiger climate classification updated. Meteorol Z, 15(3): 259–263

    Article  Google Scholar 

  • Kusaka H, Kimura F (2004). Coupling a single-layer urban canopy model with a simple atmospheric model: impact on urban heat island simulation for an idealized case. J Meteorol Soc Jpn, 82(1): 67–80

    Article  Google Scholar 

  • Li J, Song C, Cao L, Zhu F, Meng X,Wu J (2011). Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China. Remote Sens Environ, 115(12): 3249–3263

    Article  Google Scholar 

  • Li X, Zhou Y, Asrar G R, Imhoff M, Li X (2017). The surface urban heat island response to urban expansion: a panel analysis for the conterminous united states. Sci Total Environ, 605–606: 426–435

    Article  Google Scholar 

  • Lietzke B, Vogt R (2013). Variability of CO2 concentrations and fluxes in and above an urban street canyon. Atmos Environ, 74: 60–72

    Article  Google Scholar 

  • Liu K, Gu X, Yu T, Gao Z, Gao W, Liu C (2011). Relationships between urban heat island effect and land use and land cover change around urban weather stations. Climatic and Environmental Research, 16(6): 707–716 (in Chinese)

    Google Scholar 

  • Liu K, Su H, Li X, Wang W, Yang L, Liang H (2016). Quantifying spatial–temporal pattern of urban heat island in Beijing: an improved assessment using land surface temperature (LST) time series observations from LANDSAT, MODIS, and Chinese new satellite GaoFen-1. IEEE J Sel Top Appl Earth Obs Remote Sens, 9(5): 2028–2042

    Article  Google Scholar 

  • Liu Z, He C, Zhou Y, Wu J (2014). How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion. Landsc Ecol, 29(5): 763–771

    Article  Google Scholar 

  • Luo X, Peng Y (2016). Scale effects of the relationships between urban heat islands and impact factors based on a geographically-weighted regression model. Remote Sens, 8(9): 760

    Article  Google Scholar 

  • Lynn B H, Carlson T N, Rosenzweig C, Goldberg R, Druyan L, Cox J, Gaffin S, Parshall L, Civerolo K (2009). A modification to the NOAH LSM to simulate heat mitigation strategies in the New York City metropolitan area. J Appl Meteorol Climatol, 48(2): 199–216

    Article  Google Scholar 

  • Mao W, Wang X, Cai J, Zhu M (2016). Multi-dimensional histogrambased information capacity analysis of urban heat island effect using Landsat 8 data. Remote Sens Lett, 7(10): 925–934

    Article  Google Scholar 

  • McPherson R A, Fiebrich C A, Crawford K C, Kilby J R, Grimsley D L, Martinez J E, Basara J B, Illston B G, Morris D A, Kloesel K A, Melvin A D, Shrivastava H, Wolfinbarger J M, Bostic J P, Demko D B, Elliott R L, Stadler S J, Carlson J D, Sutherland A J (2007). Statewide monitoring of the mesoscale environment: a technical update on the Oklahoma Mesonet. J Atmos Ocean Technol, 24(3): 301–321

    Article  Google Scholar 

  • Mildrexler D J, Zhao M, Running S W (2011). A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J Geophys Res Biogeosci, 116(G03025)

    Google Scholar 

  • Mu Q, Heinsch F A, Zhao M, Running S W (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ, 111(4): 519–536

    Article  Google Scholar 

  • Oke T R (1973). City size and the urban heat island. Atmos Environ, 7 (8): 769–779

    Article  Google Scholar 

  • Oke T R (2004). Initial guidance to obtain representative meteorological observations at urban sites. IOM Rep. 81, WMO/TD-No. 1250, 1–47. [Available online at http://www.wmo.ch/pages/prog/www/IMOP/publications/IOM-81/IOM-81-UrbanMetObs.pdf]

  • Parker D E (2010). Urban heat island effects on estimates of observed climate change. Wiley Interdiscip Rev Clim Chang, 1(1): 123–133

    Article  Google Scholar 

  • Peng S, Piao S, Ciais P, Friedlingstein P, Ottle C, Bréon F M, Nan H, Zhou L, Myneni R B (2012). Surface urban heat island across 419 global big cities. Environ Sci Technol, 46(2): 696–703

    Article  Google Scholar 

  • Peterson T C (2003). Assessment of urban versus rural in situ surface temperatures in the contiguous United States: no difference found. J Clim, 16(18): 2941–2959

    Article  Google Scholar 

  • Piao S, Sitch S, Ciais P, Friedlingstein P, Peylin P,Wang X, Ahlström A, Anav A, Canadell J G, Cong N, Huntingford C, Jung M, Levis S, Levy P E, Li J, Lin X, LomasMR, LuM, Luo Y, Ma Y, Myneni R B, Poulter B, Sun Z Z, Wang T, Viovy N, Zaehle S, Zeng N (2013). Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob Change Biol, 19(7): 2117–2132

    Article  Google Scholar 

  • Price J C (1979). Assessment of the urban heat island effect through the use of satellite data. Mon Weather Rev, 107(11): 1554–1557

    Article  Google Scholar 

  • Qian Y, Zhou W, Li W, Han L (2015). Understanding the dynamic of greenspace in the urbanized area of Beijing based on high resolution satellite images. Urban Forestry & Urban Greening, 14(1): 39–47

    Article  Google Scholar 

  • Qiu G, Li H, Zhang Q, Chen W, Liang X, Li X (2013). Effects of evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture. J Integr Agric, 12(8): 1307–1315

    Article  Google Scholar 

  • Ren G, Zhou Y, Chu Z, Zhou J, Zhang A, Guo J, Liu X (2008). Urbanization effects on observed surface air temperature trends in North China. J Clim, 21(6): 1333–1348

    Article  Google Scholar 

  • Roman K K, O’Brien T, Alvey J B, Woo O (2016). Simulating the effects of cool roof and PCM (phase change materials) based roof to mitigate UHI (urban heat island) in prominent US cities. Energy, 96: 103–117

    Article  Google Scholar 

  • Schmid H, Cleugh H, Grimmond C, Oke T (1991). Spatial variability of energy fluxes in suburban terrain. Boundary-Layer Meteorol, 54(3): 249–276

    Article  Google Scholar 

  • Steeneveld G, Koopmans S, Heusinkveld B, Van Hove L, Holtslag A (2011). Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. J Geophys Res Atmos, 116(D20): D20129

    Article  Google Scholar 

  • Stewart I D (2011). A systematic review and scientific critique of methodology in modern urban heat island literature. Int J Climatol, 31(2): 200–217

    Article  Google Scholar 

  • Stewart I D, Oke T R (2012). Local climate zones for urban temperature studies. Bull Am Meteorol Soc, 93(12): 1879–1900

    Article  Google Scholar 

  • Walker J, de Beurs K, Henebry G (2015). Land surface phenology along urban to rural gradients in the US Great Plains. Remote Sens Environ, 165: 42–52

    Article  Google Scholar 

  • Wan Z (2008). New refinements and validation of the MODIS landsurface temperature/emissivity products. Remote Sens Environ, 112 (1): 59–74

    Article  Google Scholar 

  • Watts M, Schultz S, Bailey T, Ast E, Russell B, Morris E, Vines K, S L (2015). Climate action in megacities 3.0: Networking works, there is no global solution without local action. London: C40 Cities Climate Leadership Group

    Google Scholar 

  • Weng Q, Lu D, Schubring J (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ, 89(4): 467–483

    Article  Google Scholar 

  • Wong N H, Chen Y, Ong C L, Sia A (2003). Investigation of thermal benefits of rooftop garden in the tropical environment. Build Environ, 38(2): 261–270

    Article  Google Scholar 

  • Yang X, Li Y, Luo Z, Chan P W (2017). The urban cool island phenomenon in a high- rise high- density city and its mechanisms. Int J Climatol, 37(2): 890–904

    Article  Google Scholar 

  • Yao R, Wang L, Huang X, Niu Y, Chen Y, Niu Z (2018). The influence of different data and method on estimating the surface urban heat island intensity. Ecol Indic, 89: 45–55

    Article  Google Scholar 

  • Zhang X, Friedl M A, Schaaf C B, Strahler A H (2004a). Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Glob Change Biol, 10(7): 1133–1145

    Article  Google Scholar 

  • Zhang X, Friedl M A, Schaaf C B, Strahler A H, Schneider A (2004b). The footprint of urban climates on vegetation phenology. Geophys Res Lett, 31(12): L12209

    Google Scholar 

  • Zhao G, Dong J, Cui Y, Liu J, Zhai J, He T, Zhou Y, Xiao X (2018). Evapotranspiration-dominated biogeophysical warming effect of urbanization in the Beijing-Tianjin-Hebei region, China. Clim Dyn, https://doi.org/10.1007/s00382-018-4189-0

    Google Scholar 

  • Zhao L, Lee X, Smith R B, Oleson K (2014). Strong contributions of local background climate to urban heat islands. Nature, 511(7508): 216–219

    Article  Google Scholar 

  • Zhao S, Liu S, Zhou D (2016). Prevalent vegetation growth enhancement in urban environment. Proc Natl Acad Sci USA, 113(22): 6313–6318

    Article  Google Scholar 

  • Zhou B, Rybski D, Kropp J (2013). On the statistics of urban heat island intensity. Geophys Res Lett, 40(20): 5486–5491

    Article  Google Scholar 

  • Zhou D, Zhang L, Hao L, Sun G, Liu Y, Zhu C (2016). Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China. Sci Total Environ, 544: 617–626

    Article  Google Scholar 

Download references

Acknowledgements

We thank Oklahoma Mesonet, which is designed and implemented by scientists at the University of Oklahoma (OU) and at Oklahoma State University (OSU), for providing the meteorological data for the entire state of Oklahoma.We thank Multi-Resolution Land Characteristics (MRLC) consortium for providing the percent developed imperviousness data layer. We thank NASA EOSDIS LP DAAC and the Numerical Terradynamic Simulation Group for providing the MODIS EVI and ET datasets. This study is supported in part by research grants from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19040301), the National Science Foundation EPSCoR program of American (IIA-1301789), the National Natural Science Foundation of China (Grant Nos. 41671425 and 41401504), HENU-CPGIS Collaborative Fund (JOF201701), the Key Research Program of Frontier Sciences by the Chinese Academy of Sciences (QYZDB-SSW-DQC005), and the “Thousand Youth Talents Plan.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangming Xiao or Jinwei Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Xiao, X., Doughty, R.B. et al. The relationships between urban-rural temperature difference and vegetation in eight cities of the Great Plains. Front. Earth Sci. 13, 290–302 (2019). https://doi.org/10.1007/s11707-018-0729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-018-0729-5

Keywords

Navigation