Skip to main content
Log in

Assimilation of atmospheric infrared sounder radiances with WRF-GSI for improving typhoon forecast

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

The Atmospheric Infrared Sounder (AIRS) can provide the profile information on atmospheric temperature and humidity in high vertical resolution. The assimilation of its radiances has been proven to improve the Numerical Weather Prediction (NWP) in global models. In this study, regional assimilation of AIRS radiances was carried out in a community assimilation system, using Gridpoint Statistical Interpolation (GSI) coupled with the Weather Research and Forecasting (WRF) model. The AIRS channel selection, quality control, and radiances bias correction were examined and illustrated for optimized assimilation. The bias correction scheme in the regional model showed that corrections on most of the channels produce satisfactory results except for several land surface channels. The assimilation and forecast experiments were carried out for three typhoon cases (Saola, Damrey, and Haikui in 2012) with and without including AIRS radiances. Results show that the assimilation of AIRS radiances into the WRF/GSI model improves both the typhoon track and intensity in a 72-hour forecast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aumann H H, Chahine M T, Gautier C, Goldberg M D, Kalnay E, Mcmillin L M, Revercomb H, Rosenkranz P W, Smith W L, Staelin D H, Strow L L, Susskind J (2003). AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products, and processing systems. IEEE Trans Geosci Remote Sens, 41(2): 253–264

    Article  Google Scholar 

  • Bauer P, Thorpe A, Brunet G (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567): 47–55

    Article  Google Scholar 

  • Benjamin S G, Weygandt S S, Brown J M, Hu M, Alexander C R, Smirnova T G, Olson J B, James E P, Dowell D C, Grell G A, Lin H, Peckham S E, Smith T L, Moninger W R, Kenyon J S, Manikin G S (2016). A North American hourly assimilation and model forecast cycle: the rapid refresh. Mon Weather Rev, 144(4): 1669–1694

    Article  Google Scholar 

  • Bernardet L, Tallapragada V, Bao S, Trahan S, Kwon Y, Liu Q, Tong M, Biswas M, Brown T, Stark D, Carson L, Yablonsky R, Uhlhorn E, Gopalakrishnan S, Zhang X, Marchok T, Kuo B, Gall R (2015). Community support and transition of research to operations for the hurricane weather research and forecasting model. Bull Am Meteorol Soc, 96(6): 953–960

    Article  Google Scholar 

  • Carrier M J, Zou X, Lapenta W M (2008). Comparing the vertical structures of weighting functions and adjoint sensitivity of radiance and verifying mesoscale forecasts using AIRS radiance observations. Mon Weather Rev, 136(4): 1327–1348

    Article  Google Scholar 

  • Carrier M, Zou X, Lapenta W M (2007). Identifying cloud-uncontaminated AIRS spectra from cloudy FOV based on cloud-top pressure and weighting functions. Mon Weather Rev, 135(6): 2278–2294

    Article  Google Scholar 

  • Chahine M T, Pagano T S, Aumann H H, Atlas R, Barnet C, Blaisdell J, Chen L, Divakarla M, Fetzer E J, Goldberg M, Gautier C, Granger S, Hannon S, Irion F W, Kakar R, Kalnay E, Lambrigtsen B H, Lee S Y, Le MARSHALL J, McMillan W W, McMillin L, Olsen E T, Revercomb H, Rosenkranz P, Smith W L, Staelin D, Strow L L, Susskind J, Tobin D, Wolf W, Zhou L (2006). Improving weather forecasting and providing new data on greenhouse gases. Bull Am Meteorol Soc, 87: 911–926

    Article  Google Scholar 

  • De PondecaMS F V, Manikin G S, DiMego G, Benjamin S G, Parrish D F, Purser R J, Wu W S, Horel J D, Myrick D T, Lin Y, Aune R M, Keyser D, Colman B, Mann G, Vavra J (2011). The real-time mesoscale analysis at NOAA’s National Centers for Environmental Prediction: current status and development. Weather Forecast, 26(5): 593–612

    Article  Google Scholar 

  • Derber J C, Wu W S (1998). The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon Weather Rev, 126(8): 2287–2299

    Article  Google Scholar 

  • Eyre J R, Kelly G A, Mcnally A P, Andersson E, Persson A (1993). Assimilation of TOVS radiance information through one-dimensional variational analysis. Q J R Meteorol Soc, 119(514): 1427–1463

    Article  Google Scholar 

  • Fourrié N, Thépaut J J (2002). Validation of the NESDIS Near Real Time AIRS channel selection. ECMWF Technical Memorandum, 1–14

    Google Scholar 

  • Goldberg M D, Kilcoyne H, Cikanek H, Mehta A (2013). Joint polar satellite system: the United States next generation civilian polarorbiting environmental satellite system. J Geophys Res Atmos, 118(24): 13,463–13,475

    Article  Google Scholar 

  • Klaes K D, Cohen M, Buhler Y, Schlüssel P, Munro R, Luntama J P, von Engeln A, Clérigh E Ó, Bonekamp H, Ackermann J, Schmetz J (2007). An introduction to the EUMETSAT polar system. Bull Am Meteorol Soc, 88(7): 1085–1096

    Article  Google Scholar 

  • Le Marshall J, Jung J, Derber J, Chahine M, Treadon R, Lord S J, Goldberg M, Wolf W, Liu H C, Joiner J, Woollen J, Todling R, van Delst P, Tahara Y (2006). Improving global analysis and forecasting with AIRS. Bull Am Meteorol Soc, 87(7): 891–894

    Article  Google Scholar 

  • Li J, Liu H (2009). Improved hurricane track and intensity forecast using single field-of-view advanced IR sounding measurements. Geophys Res Lett, 36(11): L11813

    Article  Google Scholar 

  • Lim A H N, Jung J A, Huang H A, Ackerman S A, Otkin J A (2014). Assimilation of clear sky Atmospheric Infrared Sounder radiances in short-term regional forecasts using community models. J Appl Remote Sens, 8(1): 083655

    Article  Google Scholar 

  • Liu Y A, Huang H L A, Gao W, Lim A H N, Liu C, Shi R (2015). Tuning of background error statistics through sensitivity experiments and its impact on typhoon forecast. J Appl Remote Sens, 9(1): 096051

    Article  Google Scholar 

  • Liu Y, Huang H A, Lim A H N, Gao W(2018). Adaptive bias correction of advanced infrared sounding radiance assimilation in a regional model and its impact on typhoon forecast. J Appl Remote Sens, 12: 1

    Google Scholar 

  • McCarty W, Jedlovec G, Miller T L (2009). Impact of the assimilation of Atmospheric Infrared Sounder radiance measurements on short-term weather forecasts. J Geophys Res Atmos, 114: D18122

    Article  Google Scholar 

  • McNally A P, Watts P D (2003). A cloud detection algorithm for highspectral- resolution infrared sounders. Q J R Meteorol Soc, 129(595): 3411–3423

    Article  Google Scholar 

  • McNally P, Watts P D, Smith J, Engelen R, Kelly G, Thépaut J N, Matricardi M (2006). The assimilation of AIRS radiance data at ECMWF. Q J R Meteorol Soc, 132(616): 935–957

    Article  Google Scholar 

  • Menzel W P, Schmit T J, Zhang P, Li J (2018). Satellite based atmospheric infrared sounder development and applications. Bull Am Meteorol Soc, 99(3): 583–603

    Article  Google Scholar 

  • Miyoshi T, Kunii M (2012). Using AIRS retrievals in the WRF-LETKF system to improve regional numerical weather prediction. Tellus, Ser A, Dyn Meterol Oceanogr, 64(1): 18408

    Article  Google Scholar 

  • Pu Z, Zhang L (2010). Validation of atmospheric infrared sounder temperature and moisture profiles over tropical oceans and their impact on numerical simulations of tropical cyclones. J Geophys Res Atmos, 115(D24): 1–13

    Article  Google Scholar 

  • Rabier F, Fourrie N, Chafai D, Prunet P (2002). Channel selection methods for infrared atmospheric sounding interferometer radiances. Q J R Meteorol Soc, 128(581): 1011–1027

    Article  Google Scholar 

  • Skamarock W C, Klemp J B, Dudhia J, Gill D O, Barker D M, Duda M G, Huang X Y, Wang W, Powers J G (2008). A Description of the Advanced Research WRF Version 3. NCAR Tech. Notes NCAR/TN-475 + STRT, 1–113

    Google Scholar 

  • Xu D, Liu Z, Huang X Y, Min J, Wang H (2013). Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones. Meteorol Atmos Phys, 122(1–2): 1–18

    Article  Google Scholar 

  • Zheng J, Li J J, Schmit T J, Li J J, Liu Z (2015). The impact of AIRS atmospheric temperature and moisture profiles on hurricane forecasts: Ike (2008) and Irene (2011). Adv Atmos Sci, 32(3): 319–335

    Article  Google Scholar 

  • Zhou Y P, Lau K M, Reale O, Rosenberg R (2010). AIRS impact on precipitation analysis and forecast of tropical cyclones in a global data assimilation and forecast system. Geophys Res Lett, 37: L02806

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 41601469) and Fundamental Research Funds for the Central Universities in China (East China Normal University). The experiments were run on the Supercomputer located at the Computing Center of East China Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhibin Sun or Wei Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YA., Sun, Z., Chen, M. et al. Assimilation of atmospheric infrared sounder radiances with WRF-GSI for improving typhoon forecast. Front. Earth Sci. 12, 457–467 (2018). https://doi.org/10.1007/s11707-018-0728-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-018-0728-6

Keywords

Navigation