Skip to main content
Log in

Use of Sentinel-1 imagery for flood management in a reservoir-regulated river basin

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Flood hazard monitoring and mapping is of great importance because it represents a significant contribution to risk management. The present study investigated the flood event that occurred downstream from the transboundary Strymon River basin, more specifically at Serres basin–a reservoir-regulated basin, in the beginning of 2015. The focus of this study was to better understand the spatio-temporal dynamic of the flood and the causes that initiated the hazard. Within the Serres basin, the Strymon transboundary river outflows to Lake Kerkini, which regulates water flow downstream for irrigation purposes and flood protection. For this research, a dataset of Sentinel-1 SAR GRD images was collected and processed covering the period of October 2014‒October 2015 to investigate the water level changes in Lake Kerkini. Based on SAR images, binary water/non-water products and multitemporal RGB amplitude images were generated and interpreted. Sentinel-1 products have proved to be an effective tool on flood hazard dynamic extension mapping and estimation of water extent bodies retained by small reservoirs. In agreement with hydro-meteorological data and the high-resolution DEM, it was conceived that the flood event occurred due to the water volume flowing from upstream in the reservoir and the large amount of water draining from the tributaries into nearby sub-basins. Moreover, inefficient water management of the overwhelming water flow through the dam could further strengthen the flood event. The proposed approach, which is entirely based on open access remotely sensed data and processing tools, could be implemented in the same area for past flood events to produce archive retrospective data, as well as in other similar reservoir-regulated river basins in terms of water management and flood risk management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acford M (2015). The reservoirs act 1975 and reservoir risk designations. Dams and Reservoirs, 25(2): 56–57

    Article  Google Scholar 

  • Albers S J, Déry S J, Petticrew E L (2016). Flooding in the Nechako River basin of Canada: a random forest modeling approach to flood analysis in a regulated reservoir system. Can Water Resour J, 41(1–2): 250–260

    Article  Google Scholar 

  • Alfieri L, Burek P, Dutra E, Krzeminski B, Muraro D, Thielen J, Pappenberger F (2013). GloFAS-global ensemble streamflow forecasting and flood early warning. Hydrol Earth Syst Sci, 17(3): 1161–1175

    Article  Google Scholar 

  • Amitrano D, Martino G D, Iodice A, Riccio D, Ruello G (2017). Small reservoirs extraction in semiarid regions using multitemporal synthetic aperture radar images. IEEE J Sel Top Appl Earth Obs Remote Sens, 10(8): 3482–3492

    Article  Google Scholar 

  • Balser A W, Wylie B K (2010). Multitemporal L- and C-band synthetic aperture radar to highlight differences in water status among boreal forest and wetland systems in the Yukon Flats, interior Alaska. U.S. Geological Survey Open-File Report 2010–1027, 18 p

    Google Scholar 

  • Ban Y, Hu H (2007). Multitemporal RADARSAT-1 fine-beam SAR data for land-cover mapping and change detection. In: Proceedings Urban Remote Sens. Joint Event, Paris, France, 1–7

    Google Scholar 

  • Bazi Y, Bruzzone L, Melgani F (2005). An unsupervised approach based on the generalized gaussian model to automatic change detection in multitemporal SAR images. IEEE Trans Geosci Remote Sens, 43(4): 874–887

    Article  Google Scholar 

  • Bioresita F, Puissant A, Stumpf A, Male J P (2017). Active and passive remote sensing data time series for flood detection and surface water mapping. Geophys Res Abstr, 19: EGU2017–10082

    Google Scholar 

  • Brivio P A, Colombo R, Maggi M, Tomasoni R (2002). Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int J Remote Sens, 23(3): 429–441

    Article  Google Scholar 

  • Bullón T (2011). Relationships between precipitation and floods in the fluvial basins of Central Spain based on documentary sources from the end of the 16th century. Nat Hazards Earth Syst Sci, 11(8): 2215–2225

    Article  Google Scholar 

  • Chini M, Hostache R, Giustarini L, Matgen P (2017). A hierarchical split-based approach for parametric thresholding of SAR images: flood inundation as a test case. IEEE Trans Geosci Remote Sens, 55 (12): 6975–6988

    Article  Google Scholar 

  • Chini M, Papastergios A, Pulvirenti L, Pierdicca N, Matgen P, Parcharidis I (2016). SAR coherence and polarimetric information for improving flood mapping. In: Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10‒15 July, 2016, 7577–7580

    Google Scholar 

  • Chini M, Piscini A, Cinti F R, Amici S, Nappi R, De Martini PM (2013). The 2011 Tohoku-Oki (Japan) tsunami inundation and liquefaction investigated by optical, thermal and SAR data. IEEE Geosci Remote Sens Lett, 10(2): 347–351

    Article  Google Scholar 

  • Chini M, Pulvirenti L, Pierdicca N (2012). Analysis and interpretation of the COSMO-SkyMed observations of the 2011 Japan Tsunami. IEEE Geosci Remote Sens Lett, 9(3): 467–471

    Article  Google Scholar 

  • Curlander J C, McDonough R N (1991). Synthetic Aperture Radar: Systems and Signal Processing. New York: John Wiley and Sons

    Google Scholar 

  • De Roo A J, Van Der Knijff M, Horritt G, Schmuck De Jong S (1999). Assessing flood damages of the 1997 Oder flood and the 1995 Meuse flood. Paper presented at 2nd International ITC Symposium on Operationalization of Remote Sensing, Enschede, Netherlands

    Google Scholar 

  • De Zan F, Monti Guarnieri A M (2006). TOPSAR: terrain observation by progressive scans. IEEE Trans Geosci Remote Sens, 44(9): 2352–2360

    Article  Google Scholar 

  • Doulgeris Ch, Halkidis I, Papadimos D (2008). Use of modern technology for the protection and management of water resources in Strymonas/Struma River basin. The Goulandris Natural History Museum-Greek Biotope/Wetland Centre. Thermi, Greece. p. 82

    Google Scholar 

  • Foumelis M (2017). Impact of dam failure induced flood on road network using combined remote sensing and geospatial approach. J Appl Remote Sens, 11(1): 016004

    Article  Google Scholar 

  • Gauvin C, Delage E, Gendreau M (2017). Decision rule approximations for the risk averse reservoir management problem. Eur J Oper Res, 261(1): 317–336

    Article  Google Scholar 

  • Giustarini L, Hostache R, Matgen P, Schumann G J, Bates P D, Mason D C (2013). A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE Trans Geosci Remote Sens, 51(4): 2417–2430

    Article  Google Scholar 

  • Henry J B, Chastanet P, Fellah K, Desnos Y L (2006). ENVISAT multipolarised ASAR data for flood mapping. Int J Remote Sens, 27(10): 1921–1929

    Article  Google Scholar 

  • Herschy R W (2009). Streamflow Management. Rouledge publisher, London, p. 507

    Google Scholar 

  • Horritt M S (2006). A methodology for the validation of uncertain flood inundation models. J Hydrol (Amst), 326(1–4): 153–165

    Article  Google Scholar 

  • Horritt M S, Mason D C, Luckman A J (2001). Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. Int J Remote Sens, 22(13): 2489–2507

    Article  Google Scholar 

  • Hostache R (2006). Satellite image analysis for three-dimensional flood hazard characterisation and hydrolic modelling support. Dissertation for PhD degree. Sciences of the Universe, UMR Territories, Environment, Remote Sensing and Spatial Information, Cemagref/ ENGREF/CIRAD, Montpellier, France, p. 197 (in French)

    Google Scholar 

  • Inglada J, Mercier G (2007). A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE Trans Geosci Remote Sens, 45(5): 1432–1445

    Article  Google Scholar 

  • Jerrentzup H (1992). The fauna of Lake Kerkini. In: Gerakis P A, ed. Conservation and Management of Greek Wetlands. Proceedings of a Greek Wetlands Workshop, Thessaloniki, Greece, 1989, IUCN, Gland, Switzerland

    Google Scholar 

  • Karydakis A, Arvanitis A, Andritsos N, Fytikas M (2005). Low enthalpy geothermal fields in the Strymon Basin (Northern Greece). In: Proceedings World Geothermal Congress 2005 Antalya, Turkey, 24‒29 April, 2005

    Google Scholar 

  • Kattenborn G, Nezry E, De Grandi G, Sieber A J (1993). High resolution detection and monitoring of changes using ERS-1 time series. In: Proceedings of 2nd ERS-1 Symposium, Hamburg, Germany, 11‒14 October, 1993 (ESA, ESTEC: The Netherlands). 635–642

    Google Scholar 

  • Kiage L M, Walker N D, Balasubramanian S, Babin A, Barras J (2005). Applications of Radarsat-1 synthetic aperture radar imagery to assess hurricane-related flooding of coastal Louisiana. Int J Remote Sens, 26 (24): 5359–5380

    Article  Google Scholar 

  • Klemas V (2015). Remote sensing of floods and flood-prone areas: an overview. J Coast Res, 31(4): 1005–1013

    Article  Google Scholar 

  • Kundzewicz Z W, Kanae S, Seneviratne S I, Handmer J, Nicholls N, Peduzzi P, Mechler R, Bouwer L M, Arnell N, Mach K, Muir-Wood R, Brakenridge G R, Kron W, Benito G, Honda Y, Takahashi K, Sherstyukov B (2014). Flood risk and climate change: global and regional perspectives. Hydrol Sci J, 59(1): 1–28

    Article  Google Scholar 

  • Kussul N, Shelestov A, Skakun S V (2011). Flood Monitoring from SAR Data. In: Kogan F, Powell A, Fedorov O, eds. Use of Satellite and Insitu Data to Improve Sustainability. NATO Science for Peace and Security Series C: Environmental Security. Springer: 19–29

    Google Scholar 

  • Levsen M, Conway J A, Sieber A (1993). Evaluating multitemporal ERS-1 data for tropical forest mapping: regional mapping and change detection applications. In: Proceedings of 2nd ERS-1 Symposium, Hamburg, Germany, 11‒14 October, 1993 (ESA, ESTEC: The Netherlands)

    Google Scholar 

  • Lopes A, Nezry E, Touzi R, Laur H (1993). Structure detection and statistical adaptive speckle filtering in SAR images. Int J Remote Sens, 14(9): 1735–1758

    Article  Google Scholar 

  • Martinis S, Kersten J, Twele A (2015). A fully automated TerraSAR-X based flood service. ISPRS J Photogramm Remote Sens, 104: 203–212

    Article  Google Scholar 

  • Mateo C M, Hanasaki N, Komori D, Tanaka K, Kiguchi M, Champathong A, Sukhapunnaphan T, Yamazaki D, Oki T (2014). Assessing the impacts of reservoir operation to floodplain inundation by combining hydrological, reservoir management, and hydrodynamic models. Water Resour Res, 50(9): 7245–7266

    Article  Google Scholar 

  • Milly P C, Wetherald R T, Dunne K A, Delworth T L (2002). Increasing risk of great floods in a changing climate. Nature, 415 (6871): 514–517

    Article  Google Scholar 

  • Motovilov Y, Danilov-Danilyan V, Dod E, Kalugin A (2015). Flood protection effect of the existing and projected reservoirs in the Amur River basin: evaluation by the hydrological modelling system. In: the IAHS-AISH Proceedings and Reports, 370: 63–67

    Article  Google Scholar 

  • Nakmuenwai P, Yamazaki F, Liu W (2017). Automated extraction of inundated areas from multitemporal dual-polarization radarsat-2 images of the 2011 central Thailand flood. Remote Sens, 9(1): 78

    Article  Google Scholar 

  • Nazry E, Lopes A, Touzi R (1991). Detection of structural and textural features for SAR images filtering. Proceedings of IGARSS, 91: 2169–2172

    Google Scholar 

  • Oberstadler R, Hönsch H, Huth D (1997). Assessment of the mapping capabilities of ERS-1 SAR data for flood mapping: a case study in Germany. Hydrol Processes, 11(10): 1415–1425

    Article  Google Scholar 

  • Ogilvie A, Belaud G, Massuel S, Mulligan M, Le Goulven P, Calvez R (2016). Assessing floods and droughts in ungauged small reservoirs with long-term landsat imagery. Geosciences (Switzerland), 6(4), https://doi.org/10.3390/geosciences6040042

    Google Scholar 

  • Papafilippou-Pennou E (2004). Dynamic Evolution and Recent Exogenic Processes of (Strymon) River Network in Serres Graben (North Greece). Dissertation for PhD degree. Department of Physical Environmental Geography, School of Geology, Faculty of Sciences, Aristotle University of Thessaloniki. 1–243

    Google Scholar 

  • Perrou T, Papastergios A, Parcharidis I, Chini M (2017). Spatiotemporal hazard mapping of a flood event ‘migration’ in a Transboundary River Basin as an operational tool in Flood Risk Management. In: Proceedings of SPIE 10426, Active and Passive Microwave Remote Sensing for Environmental Monitoring, 104260A (3 October 2017)

    Google Scholar 

  • Peter S J, De Araújo J C, Araújo N A, Herrmann H J (2014). Flood avalanches in a semiarid basin with a dense reservoir network. J Hydrol (Amst), 512: 408–420

    Article  Google Scholar 

  • Petiteville I, Ward S, Dyke G, Steventon M, Harry J (2015). Satellite Earth Observations in Support of Disaster Risk Reduction. CEOS Earth Observation Handbook, 3rd UN World Conference on Disaster Risk Reduction: European Space Agency

    Google Scholar 

  • Pierdicca N, Chini M, Pulvirenti L, Macina F (2008). Integrating physical and topographic information into a fuzzy scheme to map flooded area by SAR. Sensors (Basel), 8(7): 4151–4164

    Article  Google Scholar 

  • Pierdicca N, Pulvirenti L, Chini M, Guerriero L, Candela L (2013). Observing floods from space: experience gained from COSMOSkyMed observations. Acta Astronaut, 84: 122–133

    Article  Google Scholar 

  • Psilovikos A, Papafilippou-Pennou E, Albanakis K, Vouvalidis K (1994). Bedload transport and deposition in the river Strymon artificial channel before its reach to the Kerkini reservoir. Bulletin of Geological Society of Greece, XXX(4): 149–155

    Google Scholar 

  • Pulvirenti L, Chini M, Pierdicca N, Boni G (2016). Use of SAR data for detecting floodwater in urban and agricultural areas: the role of the interferometric coherence. IEEE Trans Geosci Remote Sens, 54(3): 1532–1544

    Article  Google Scholar 

  • Pulvirenti L, Chini M, Pierdicca N, Guerriero L, Ferrazzoli P (2011b). Flood monitoring using multitemporal COSMO-SkyMed data: image segmentation and signature interpretation. Remote Sens Environ, 115 (4): 990–1002

    Article  Google Scholar 

  • Pulvirenti L, Pierdicca N, Chini M, Guerriero L (2011a). An algorithm for operational flood mapping from synthetic aperture radar (SAR) data using fuzzy logic. Nat Hazards Earth Syst Sci, 11(2): 529–540

    Article  Google Scholar 

  • Pulvirenti L, Pierdicca N, Chini M, Guerriero L (2013). Monitoring flood evolution in vegetated areas using COSMOSkyMed data: the Tuscany 2009 case study. IEEE J Sel Top Appl Earth Obs Remote Sens, 6(4): 1807–1816

    Article  Google Scholar 

  • Rees W G (2001). Physical Principles of Remote Sensing. Cambridge University Press

    Google Scholar 

  • Schlaffer S, Hollaus M, Wagner W, Matgen P (2012). Flood delineation from synthetic aperture radar data with the help of a priori knowledge from historical acquisitions and digital elevation models in support of near-real-time flood mapping. In: Proceedings of SPIE- the International Society for Optical Engineering, 8538

    Google Scholar 

  • Schubert A, Small D, Miranda N, Geudtner D, Meier E (2015). Sentinel-1A product geolocation accuracy: commissioning phase results. Remote Sens, 7(7): 9431–9449

    Article  Google Scholar 

  • Schultz G A, Engman E T (2000). Remote Sensing in Hydrology and Water Management. Berlin: Springer-Verlag

    Book  Google Scholar 

  • Schumann G, Hostache R, Puech C, Hoffmann L, Matgen P, Pappenberger F, Pfister L (2007). High-resolution 3D flood information from radar for effective flood hazard management. IEEE Trans Geosci Remote Sens, 45(6): 1715–1725

    Article  Google Scholar 

  • Small D, Schubert A (2008). A guide to ASAR geocoding, RSL-ASARGC-AD, Issue 1.0. University of Zurich

    Google Scholar 

  • Sulaiman N H, Kamarudin M K, Toriman M E, Juahir H, Ata F M, Azid A, Wahab N J, Umar R, Khalit S I, Makhtar M, Arfan A, Sideng U (2017). Relationship of rainfall distribution and water level on major flood 2014 in Pahang River Basin, Malaysia. Environ Asia, 10(1): 1–8

    Google Scholar 

  • Sun X, Xu M (2017). Optimal control of water flooding reservoir using proper orthogonal decomposition. J Comput Appl Math, 320: 120–137

    Article  Google Scholar 

  • Sylaios G K, Kamidis N, Tsihrintzis V A (2010). Impact of river damming on coastal stratification–mixing processes: the cases of Strymon and Nestos Rivers, N. Greece. Desalination, 250(1): 302–312

    Article  Google Scholar 

  • Syrides G (2000). Neogene marine cycles in Strymon basin, Macedonia, Greece. Geological Society of Greece, Special Publications in: Proceedings Interim Colloquim RCMNS, Patras, Greece, May 1988, 217–225

    Google Scholar 

  • Torres R, Snoeij P, Geudtner D, Bibby D, Davidson M, Attema E, Potin P, Rommen B, Floury N, Brown M, Navas Traver I, Deghaye P, Duesmann B, Rosich B, Miranda N, Bruno C, L’Abbate M, Croci R, Pietropaolo A, Huchler M, Rostan F (2012). GMES Sentinel-1 mission. Remote Sens Environ, 120: 9–24

    Article  Google Scholar 

  • Townsend P A (2002). Relationships between forest structure and the detection of flood inundation in forested wetlands using C-band SAR. Int J Remote Sens, 23(3): 443–460

    Article  Google Scholar 

  • Vicente-Serrano S M, Zabalza-Martínez J, Borràs G, López-Moreno J I, Pla E, Pascual D, Savé R, Biel C, Funes I, Azorin-Molina C, Sanchez-Lorenzo A, Martín-Hernández N, Peña-Gallardo M, Alonso-González E, Tomas-Burguera M, El Kenawy A (2017). Extreme hydrological events and the influence of reservoirs in a highly regulated river basin of northeastern Spain. Journal of Hydrology: Regional Studies, 12: 13–32

    Google Scholar 

  • Vouvalidis K (1994). Natural and anthropogenic processes that contribute to the development of the river Strymon estuary, N. Greece. Dissertation for PhD degree. Aristotle University of Thessaloniki, Faculty of Sciences, School of Geology, Department of Physical Environmental Geography, p. 192

    Google Scholar 

  • Yousif O, Ban Y (2013). Improving urban change detection from multitemporal SAR images using PCA-NLM. IEEE Trans Geosci Remote Sens, 51(4): 2032–2041

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Lake Kerkini Management Authority, National Cadastre and Mapping Agency of Greece, and Serres basin Agricultural Cooperative. Authors would like to acknowledge the Interbalkan Environment Center for providing data in the framework of the River Alert project. Finally, the authors would like to thank the ESA Research and Service Support (RSS) team for supporting our processing work by providing a high performance Virtual Machine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Perrou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrou, T., Garioud, A. & Parcharidis, I. Use of Sentinel-1 imagery for flood management in a reservoir-regulated river basin. Front. Earth Sci. 12, 506–520 (2018). https://doi.org/10.1007/s11707-018-0711-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-018-0711-2

Keywords

Navigation