Advertisement

Frontiers of Earth Science

, Volume 12, Issue 1, pp 52–62 | Cite as

Nitrogen uptake by phytoplankton in surface waters of the Indian sector of Southern Ocean during austral summer

  • S. C. Tripathy
  • Sivaji Patra
  • K. Vishnu Vardhan
  • A. Sarkar
  • R. K. Mishra
  • N. Anilkumar
Research Article

Abstract

This study reports the nitrogen uptake rate (using 15N tracer) of phytoplankton in surface waters of different frontal zones in the Indian sector of the Southern Ocean (SO) during austral summer of 2013. The investigated area encompasses four major frontal systems, i.e., the subtropical front (STF), subantarctic front (SAF), polar front-1 (PF1) and polar front-2 (PF2). Southward decrease of surface water temperature was observed, whereas surface salinity did not show any significant trend. Nutrient (NO3 and SiO44–) concentrations increased southward from STF to PF; while ammonium (NH4+), nitrite (NO2) and phosphate (PO43–) remained comparatively stable. Analysis of nutrient ratios indicated potential N-limited conditions at the STF and SAF but no such scenario was observed for PF. In terms of phytoplankton biomass, PF1 was found to be the most productive followed by SAF, whereas PF2 was the least productive region. Nitrate uptake rate increased with increasing latitude, as no systematic spatial variation was discerned for NH4+ and urea (CO(NH2)2). Linear relationship between nitrate and total N-uptake reveals that the studied area is capable of exporting up to 60% of the total production to the deep ocean if the environmental settings are favorable. Like N-uptake rates the f-ratio also increased towards PF region indicating comparatively higher new production in the PF than in the subtropics. The moderately high average f-ratio (0.53) indicates potentially near equal contributions by new production and regenerated production to the total productivity in the study area. Elevation in N-uptake rates with declining temperature suggests that the SO with its vast quantity of cool water could play an important role in drawing down the atmospheric CO2 through the “solubility pump”.

Keywords

nitrogen uptake f-ratio new productivity frontal zones Southern Ocean 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors express gratitude to the Ministry of Earth Sciences, Govt. of India for financial aid to conduct this study, and Director, NCAOR for his constant encouragement and support. We thank, Head of the VMC, NIOT for providing us the vessel and essential logistic supports. Sincerely acknowledge the help from the Captain, crew and scientific members of the SOE-7. The first author earnestly thanks Dr. M. Tiwari and Mr. S. Nagoji of MASTIL, NCAOR for facilitating 15N sample analysis. Support from administration, procurement and finance divisions’ staff of NCAOR is highly acknowledged. This is NCAOR contribution No. 07/2017.

References

  1. Anderson F R (2003). What regulates the efficiency of the biological pump in the Southern Ocean. US JGOFS News, 12(2): 1–4Google Scholar
  2. Anilkumar N, Chacko R, Sabu P, George J V (2015). Freshening of Antarctic bottom water in the Indian Ocean sector of Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr, 118: 162–169CrossRefGoogle Scholar
  3. Anilkumar N, Luis A J, Somayajulu Y K, Ramesh Babu V, Dash M K, Pednekar S M, Babu K N, Sudhakar M, Pandey P C (2006). Fronts, water masses and heat content variability in theWestern Indian sector of the Southern Ocean during austral summer 2004. J Mar Syst, 63 (1-2): 20–34CrossRefGoogle Scholar
  4. Blain S, Queguiner B, Armand L, Belviso S, Bombled B, Bopp L, Bowie A, Brunet C, Brussaard C, Carlotti F, Christaki U, Corbière A, Durand I, Ebersbach F, Fuda J L, Garcia N, Gerringa L, Griffiths B, Guigue C, Guillerm C, Jacquet S, Jeandel C, Laan P, Lefèvre D, Lo Monaco C, Malits A, Mosseri J, Obernosterer I, Park Y H, Picheral M, Pondaven P, Remenyi T, Sandroni V, Sarthou G, Savoye N, Scouarnec L, Souhaut M, Thuiller D, Timmermans K, Trull T, Uitz J, van Beek P, Veldhuis M, Vincent D, Viollier E, Vong L, Wagener T (2007). Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature, 446(7139): 1070–1074CrossRefGoogle Scholar
  5. Boyd P W, Jickells T, Law C S, Blain S, Boyle E A, Buesseler K O, Coale K H, Cullen J J, de Baar H J W, Follows M, Harvey M, Lancelot C, Levasseur M, Owens N P J, Pollard R, Rivkin R B, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson A J (2007). Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science, 315(5812): 612–617CrossRefGoogle Scholar
  6. Chisholm W S, Falkowski P G, Cullen J J (2001). Discrediting ocean fertilization. Science, 294(5541): 309–310CrossRefGoogle Scholar
  7. Cochlan WP (2008). Nitrogen uptake in the Southern Ocean. In: Capone D G, Bronk D A, Mulholland M R, Carpenter E J, eds. Nitrogen in the Marine Environment. Elsevier, 569–596CrossRefGoogle Scholar
  8. Collos Y, Slawyk G (1986). 13C and 15N uptake by marine phytoplankton-IV. Uptake ratios and the contribution of nitrate to the production of Antarctic waters (Indian Ocean sector). Deep-Sea Res, 33(8): 1039–1051Google Scholar
  9. de Baar J W H, Boyd P W, Coale K H, Landry M R, Tsuda A, Assmy P, Bakker D C E, Bozec Y, Barber RT, Brzezinski MA, Buesseler K O, Boyé M, Croot P L, Gervais F, GorbunovMY, Harrison P J, Hiscock W T, Laan P, Lancelot C, Law C S, Levasseur M, Marchetti A, Millero F J, Nishioka J, Nojiri Y, van Oijen T, Riebesell U, Rijkenberg M J A, Saito H, Takeda S, Timmermans K R, Veldhuis M J W, Waite A M, Wong C S (2005). Synthesis of iron fertilization experiments: from the Iron Age in the age of enlightment. J Geophys Res, 110(C9): C09S16Google Scholar
  10. Dugdale R C, Goering J J (1967). Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr, 12(2): 196–206CrossRefGoogle Scholar
  11. Dugdale R C, Wilkerson F P (1986). The use of 15N to measure nitrogen uptake in eutrophic oceans; experimental considerations. Limnol Oceanogr, 31(4): 673–689CrossRefGoogle Scholar
  12. Dugdale R C, Wilkerson F P, Barber R T, Chavez F P (1992). Estimating new production in the equatorial Pacific Ocean at 150°W. J Geophys Res, 97(C1): 681–686CrossRefGoogle Scholar
  13. Eppley R W, Peterson B J (1979). Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 282(5740): 677–680CrossRefGoogle Scholar
  14. Falkowski P G, Scholes R J, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie F T, Moore III B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000). The global carbon cycle: a test of our knowledge of earth as a system. Science, 290(5490): 291–296CrossRefGoogle Scholar
  15. Fiala M, Semeneh M, Oriol L (1998). Size-fractionated phytoplankton biomass and species composition in the Indian sector of the Southern Ocean during austral summer. J Mar Syst, 17(1–4): 179–194CrossRefGoogle Scholar
  16. Gandhi N, Ramesh R, Laskar A H, Sheshshayee M S, Shetye S, Anilkumar N, Patil S M, Mohan R (2012). Zonal variability in primary production and nitrogen uptake rates in the south western Indian Ocean and the Southern Ocean. Deep Sea Res Part I Oceanogr Res Pap, 67: 32–43CrossRefGoogle Scholar
  17. Glibert P M, Biggs D C, McCarthy J J (1982). Utilisation of ammonium and nitrate during austral summer in the Scotia Sea. Deep-Sea Res, 29(7): 837–850CrossRefGoogle Scholar
  18. Holliday N P, Read J F (1998). Surface oceanic fronts between Africa and Antarctica. Deep Sea Res Part I Oceanogr Res Pap, 45(2–3): 217–238CrossRefGoogle Scholar
  19. Jacques G, Fukuchi M (1994). Phytoplankton in the Indian Antarctic Ocean. In: El-Sayed S E, ed. Southern Ocean Ecology: the BIOMASS perspective. Cambridge: Cambridge University Press, 63–78Google Scholar
  20. Jasmine P, Muraleedharan K R, Madhu N V, Asha Devi C R, Alagarsamy R, Achuthankutty C T, Jayan Z, Sanjeevan V N, Sahayak S (2009). Hydrographic and production characteristics along 45E longitude in the southwestern Indian Ocean and Southern Ocean during austral summer 2004. Mar Ecol Prog Ser, 389: 97–116CrossRefGoogle Scholar
  21. Joubert W R, Thomalla S J, Waldron H N, Lucas M I, Boye M, Le Moigne F A C, Planchon F, Speich S (2011). Nitrogen uptake by phytoplankton in the Atlantic sector of the Southern Ocean during late austral summer. Biogeosciences, 8(10): 2947–2959CrossRefGoogle Scholar
  22. Kemp A E S, Grigorov I, Pearce R B, Naveira Garabato A C (2010). Migration of the Antarctic Polar Front through the mid-Pleistocene transition: evidence and climatic implications. Quat Sci Rev, 29(17–18): 1993–2009CrossRefGoogle Scholar
  23. Kohfeld K E, Le Quere C, Harrison S P, Anderson R F (2005). Role of marine biology in glacial-ineterglacial CO2 cycles. Science, 308(5718): 74–78CrossRefGoogle Scholar
  24. Laws E A, Falkowski P G, Smith W O Jr, Ducklow H, McCarthy J J (2000). Temperature effects on export production in the open ocean. Global Biogeochem Cycles, 14(4): 1231–1246CrossRefGoogle Scholar
  25. Levasseur M E, Therriault J C (1987). Phytoplankton biomass and nutrient dynamics in a tidally induced upwelling: the role of NO3: SiO4 ratio. Mar Ecol Prog Ser, 39: 87–97CrossRefGoogle Scholar
  26. Lomas M W, Glibert P M (1999). Temperature regulation of nitrate uptake: a novel hypothesis about nitrate uptake and reduction in coolwater diatoms. Limnol Oceanogr, 44(3): 556–572CrossRefGoogle Scholar
  27. Lucas M, Seeyave S, Sanders R, Moore C M, Williamson R, Stinchcombe M (2007). Nitrogen uptake responses to a naturally Fe-fertilised phytoplankton bloom during the 2004/2005 CROZEX study. Deep Sea Res Part II Top Stud Oceanogr, 54(18–20): 2138–2173CrossRefGoogle Scholar
  28. Mengesha S, Dehairs F, Fiala M, Elskens M, Goeyens L (1998). Seasonal variations of phytoplankton community structure and nitrogen uptake regime in the Indian sector of the Southern Ocean. Polar Biol, 20(4): 259–272CrossRefGoogle Scholar
  29. Moore J K, Abbott M R (2000). Phytoplankton chlorophyll distributions and primary production in the Southern Ocean. J Geophys Res, 105 (C12): 28709–28722CrossRefGoogle Scholar
  30. Neori A, Holm-Hansen O (1982). Effects of temperature on rate of photosynthesis in Antarctic phytoplankton. Polar Biol, 1(1): 33–38CrossRefGoogle Scholar
  31. Olson R J (1980). Nitrate and ammonium uptake in Antarctic waters. Limnol Oceanogr, 25(6): 1064–1074CrossRefGoogle Scholar
  32. Orsi A H, Whitworth T III, Nowlin W D Jr (1995). On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res, 42(5): 641–673CrossRefGoogle Scholar
  33. Park Y H, Gamberoni L, Charriaud E (1993). Frontal structure, water masses and circulation in the Crozet Basin. J Geophys Res, 98(C7): 12361–12385CrossRefGoogle Scholar
  34. Pavithran S, Anilkumar N, Krishnan K P, Noronha S B, George J V, Nanajkar M, Chacko R, Dessai D R G, Achuthankutty C T (2012). Contrasting pattern in chlorophyll a distribution within the Polar Front of the Indian sector of Southern Ocean during austral summer 2010. Curr Sci, 102(6): 899–903Google Scholar
  35. Prakash S, Ramesh R, Sheshshayee M S, Mohan R, Sudhakar M (2015). Nitrogen uptake rates and f-ratios in the Equatorial and Southern Indian Ocean. Curr Sci, 108(2): 239–245Google Scholar
  36. Priscu J C, Palmisano A C, Priscu L R, Sullivan C W (1989). Temperature dependence of inorganic nitrogen uptake and assimilation in Antarctic sea-ice microalgae. Polar Biol, 9(7): 443–446CrossRefGoogle Scholar
  37. Probyn T A, Painting S J (1985). Nitrogen uptake by size-fractionated phytoplankton in Antarctic surface waters. Limnol Oceanogr, 30(6): 1327–1332CrossRefGoogle Scholar
  38. Reay D S, Priddle J, Nedwell D B, Whitehouse M J, Ellis-Evans J C, Deubert C, Connelly D P (2001). Regulation by low temperature of phytoplankton growth and nutrient uptake in the Southern Ocean. Mar Ecol Prog Ser, 219: 51–64CrossRefGoogle Scholar
  39. Sambrotto R N, Mace B J (2000). Coupling of biological and physical regimes across the Antarctic Polar Front as reflected by nitrogen production and recycling. Deep Sea Res Part II Top Stud Oceanogr, 47(15–16): 3339–3367CrossRefGoogle Scholar
  40. Sanders R, Morris P J, Stinchcombe M, Seeyave S, Venables H, Lucas M (2007). New production and the f-ratio around the Crozet Plateau in austral summer 2004–2005 diagnosed from seasonal changes in inorganic nutrient levels. Deep Sea Res Part II Top Stud Oceanogr, 54 (18-20): 2191–2207CrossRefGoogle Scholar
  41. Savoye N, Dehairs F, Elskens M, Cardinal D, Kopczynska E E, Trull T W, Wright S, Baeyens W, Griffiths F B (2004) Regional variation of spring N-uptake and new production in the Southern Ocean. Geophysical Research Letters, doi: 10.1029/2003GL018946Google Scholar
  42. Semeneh M, Dehairs F, Elskens M, Baumann M E M, Kopczynska E E, Lancelot C, Goeyens L (1998). Nitrogen uptake regime and phytoplankton community structure in the Atlantic and Indian sectors of the Southern Ocean. J Mar Syst, 17(1–4): 159–177CrossRefGoogle Scholar
  43. Sigman D M, Altabet M A, McCorkle D C, Francois R, Fischer G (2000). The d15N of nitrate in the Southern Ocean: nitrogen cycling and circulation in the ocean interior. J Geophys Res, 105(C8): 19599–19614CrossRefGoogle Scholar
  44. Sigman D M, Hain M P, Haug G H (2010). The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature, 466(7302): 47–55CrossRefGoogle Scholar
  45. Slawyk G (1979). 13C and 15N uptake by phytoplankton in the Antarctic upwelling area: results from the Antipord I cruise in the Indian Ocean Sector. Aust J Mar Freshwater Res, 30(4): 431–448CrossRefGoogle Scholar
  46. Strickland J D H, Parsons T R (1972). A practical hand book of seawater analysis. Journal of Fisheries Research Board of Canada, OttawaGoogle Scholar
  47. Thomalla S J, Waldron H N, Lucas M I, Read J F, Ansorge I J, Pakhomov E (2011). Phytoplankton distribution and nitrogen dynamics in the Southwest Indian subtropical gyre and Southern Ocean waters. Ocean Sci, 7(1): 113–127CrossRefGoogle Scholar
  48. Thompson P A, Guo M, Harrison P J (1992). Effects of variation in temperature, I. On the biochemical composition of eight species of marine phytoplankton. J Phycol, 28(4): 481–488Google Scholar
  49. Tremblay J E, Klein B, Legendre L, Rivkin R B, Therriault J C (1997). Estimation of f-ratios in oceans based on phytoplankton size structure. Limnol Oceanogr, 42(3): 595–601CrossRefGoogle Scholar
  50. Tripathy S C, Pavithran S, Sabu P, Pillai H U K, Dessai D R G, Anilkumar N (2015). Deep chlorophyll maximum and primary productivity in the Indian Ocean sector of the Southern Ocean: case study in the Subtropical and Polar Front during austral summer 2011. Deep Sea Res Part II Top Stud Oceanogr, 118: 240–249CrossRefGoogle Scholar
  51. Tripathy S C, Pavithran S, Sabu S, Naik R K, Noronha S B, Bhaskar P V, Anilkumar N (2014). Is phytoplankton productivity in the Indian Ocean sector of Southern Ocean affected by pigment packaging effect? Curr Sci, 107(6): 1019–1026Google Scholar
  52. Trull T, Rintoul S R, Hadeld M, Abraham E R (2001). Circulation and seasonal evolution of polar waters south of Australia: implications for iron fertilization of the Southern Ocean. Dee-Sea Research II, 48(11–12): 2439–2466CrossRefGoogle Scholar
  53. Uitz J, Claustre H, Griffiths F B, Ras J, Garcia N, Sandroni V (2009). A phytoplankton class-specific primary production model applied to the Kerguelen Islands region (Southern Ocean). Deep Sea Res Part I Oceanogr Res Pap, 56(4): 541–560CrossRefGoogle Scholar
  54. UNESCO (1994). Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements. Manual and Guides, 170. Scientific Committee on Oceanic Research, 29: 120Google Scholar
  55. Westwood K J, Griffiths F B, Webbe J P, Wright S W (2011). Primary production in the Sub-Antarctic and Polar Frontal Zones south of Tasmania, Australia; SAZ-Sense survey, 2007. Deep Sea Res Part II Top Stud Oceanogr, 58(21–22): 2162–2178CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  • S. C. Tripathy
    • 1
  • Sivaji Patra
    • 2
  • K. Vishnu Vardhan
    • 2
  • A. Sarkar
    • 1
  • R. K. Mishra
    • 1
  • N. Anilkumar
    • 1
  1. 1.ESSO-National Centre for Antarctic and Ocean ResearchMinistry of Earth Sciences, Headland SadaVasco-da-GamaIndia
  2. 2.ESSO-Integrated Coastal and Marine Area Management-PDMinistry of Earth Sciences, NIOT CampusVelachery, Pallikaranai, ChennaiIndia

Personalised recommendations