Frontiers of Earth Science

, Volume 12, Issue 1, pp 134–147 | Cite as

Clay mineralogy and its palaeoclimatic significance in the Luochuan loess-palaeosols over ∼1.3 Ma, Shaanxi, northwestern China

  • Changdok Won
  • Hanlie Hong
  • Feng Cheng
  • Qian Fang
  • Chaowen Wang
  • Lulu Zhao
  • Gordon Jock Churchman
Research Article
  • 4 Downloads

Abstract

To understand climate changes recorded in the Luochuan loess-palaeosols, Shaanxi province, northwestern China, clay mineralogy was studied using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and scanning electron microscopy (SEM) methods. XRD results show that clay mineral compositions in the Luochuan loess-palaeosols are dominantly illite, with minor chlorite, kaolinite, smectite, and illite-smectite mixed-layer clays (I/S). Illite is the most abundant species in the sediments, with a content of 61%–83%. The content of chlorite ranges from 5%–22%, and the content of kaolinite ranges from 5%–19%. Smectite (or I/S) occurs discontinuously along the loess profile, with a content of 0–8%. The Kübler index of illite (IC) ranges from 0.255°–0.491°, and the illite chemical index (ICI) ranges from 0.294–0.394. The CIA values of the loesspalaeosols are 61.9–69.02, and the R3+/(R3+ + R2+ + M+) values are 0.508–0.589. HRTEM observations show that transformation of illite to illite-smectite has occurred in both the loess and palaeosol, suggesting that the Luochuan loess-palaeosols have experienced a certain degree of chemical weathering. The Luochuan loess-palaeosols have the same clay mineral assemblage along the profile. However, the relative contents of clay mineral species, CIA, ICI, and IC values fluctuate frequently along the profile, and all these parameters display a similar trend. Moreover, climate changes suggested by the clay index are consistent with variations in the deep-sea δ18O records and the magnetic susceptibility value, and thus, climate changes in the Luochuan region have been controlled by global climate change.

Keywords

clay minerals weathering palaeoclimate Luochuan loess-palaeosols 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41272053 and 41472041). C.W. acknowledges a postdoctoral science foundation of China (2015M582301), Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan), and National Natural Science Youth Foundation of China (Grant No. 41602037). The authors wish to thank Dr. Yu J. S. for XRD analysis, Dr. Liu X.W. for HRTEM analysis and Dr. Yang H. and Dr. Yang Q. for SEM analysis.

References

  1. Ahmad I, Chandra R (2013). Geochemistry of loess-paleosol sediments of Kashmir Valley, India: provenance and weathering. J Asian Earth Sci, 66: 73–89CrossRefGoogle Scholar
  2. Andreola F, Castellini E, Manfredini T, Romagnoli M (2004). The role of sodium hexametaphosphate in the dissolution process of kaolinite and kaolin. J Eur Ceram Soc, 24(7): 2113–2124CrossRefGoogle Scholar
  3. Biscaye P E (1965). Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull, 76(7): 803–832CrossRefGoogle Scholar
  4. Buggle B, Glaser B, Hambach U, Gerasimenko N, Markovic S (2011). An evaluation of geochemical weathering indices in loess-paleosol studies. Quat Int, 240(1–2): 12–21CrossRefGoogle Scholar
  5. Buggle B, Hambach U, Muller K, Zoller L, Markovic S B, Glaser B (2014). Iron mineralogical proxies and Quaternary climate change in SE-European loess–paleosol sequences. Catena, 117: 4–22CrossRefGoogle Scholar
  6. Burt R (2004). Soil survey laboratory methods manual. Soil Survey Investigations Report, 42: 735Google Scholar
  7. Chen J, An Z, Liu L, Li J, Yang J, Chen Y (2001). Variation of dust chemical composition in Loess Plateau and chemical weathering of Asia inland after 2.5 Ma B.P. Sci China Earth Sci, 31(2): 136–145Google Scholar
  8. Chen L, Zhang L, Wang H, Zhou L, Chen J, Yuan B (2004). Illite of ambigenous type in Luochuan Loess Section. Chin Sci Bull, 49(23): 2449–2454 (in Chinese)Google Scholar
  9. Ehrmann W (1998). Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on palaeoclimate and ice dynamics. Palaeogeogr Palaeoclimatol Palaeoecol, 139(3–4): 213–231CrossRefGoogle Scholar
  10. Gingele F X, De Deckker P, Hillenbrand C D (2001). Clay mineral distribution in surface sediments between Indonesia and NW Australia: source and transport by ocean currents. Deep-sea Geology, 179(3–4): 135–146Google Scholar
  11. Hallam A, Grose J A, Ruffell A H (1991). Palaeoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France. Palaeogeogr Palaeoclimatol Palaeoecol, 81 (3–4): 173–187CrossRefGoogle Scholar
  12. Hong H L (2010). A review on palaeoclimate interpretation of clay minerals. Geological Science and Technology Information, 29(1): 1–8 (in Chinese)Google Scholar
  13. Hong H L, Du D, Li R, Churchman J G, Yin K, Wang C (2012a). Mixedlayer clay minerals in the Xuancheng red clay sediments, Xuancheng, Anhui Province. Earth Science-Journal of China University of Geosciences, 37(3): 424–432 (in Chinese)Google Scholar
  14. Hong H L, Li Z, Xue H J, Zhu Y H, Zhang K X, Xiang S Y (2007). Oligocene clay mineralogy of the Linxia basin: evidence of palaeoclimatic evolution subsequent to the initial-stage uplift of the Tibetan plateau. Clays Clay Miner, 55(5): 491–505CrossRefGoogle Scholar
  15. Hong H L, Wang C, Zheng K, Zhang K, Yin K, Li Z (2012b). Clay mineralogy of the Zhada sediments: evidence for climatic and tectonic evolution since ∼9 Ma in Zhada, Southwestern Tibet. Clays Clay Miner, 60(3): 240–253CrossRefGoogle Scholar
  16. Hong H L, Zhang N, Li Z, Xue H, Xia W, Yu N (2008). Clay mineralogy across the P-T boundary of the Xiakou section, China: evidence of clay provenance and environment. Clays Clay Miner, 56(2): 131–143CrossRefGoogle Scholar
  17. Hu P, Liu Q, Torrent J, Barron V, Jin C (2013). Characterizing and quantifying iron oxides in Chinese loess/paleosols: implications for pedogenesis. Earth Planet Sci Lett, 369–370: 271–283CrossRefGoogle Scholar
  18. Jaramillo S S, Mccarthy P J, Trainor T P, Fowell S J, Fiorillo A R (2015). Origin of clay minerals in alluvial palaeosols, Prince Creek formation, North slope, Alaska U.S.A: influence of volcanic ash on pedogenesis in the late Cretaceous Arctic. J Sediment Res, 85(2): 192–208CrossRefGoogle Scholar
  19. Ji J, Chen J, Liu L, Lu H (1999). Chemical weathering and magnetic susceptibility increase of chlorite in Luochuan loess. Prog Nat Sci, 9 (7): 619–623 (in Chinese)Google Scholar
  20. Ji J, Chen J, Lu H (1998). Transmission electron microscopy evidence of illite origin in Luochuan loess, Shaanxi. Chin Sci Bull, 43(19): 2095–2098 (inChinese)Google Scholar
  21. Ji J, Chen J, Wang H (1997). Crystallinity of illite from the Luochuan Loess-Palaeosol sequence, Shaanxi Province. Geological Review, 43 (2): 181–185 (in Chinese)Google Scholar
  22. Keller W D (1970). Environmental aspects of clay minerals. J Sediment Petrol, 40(3): 788–854Google Scholar
  23. Kisch H J (1991). Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. J Metamorph Geol, 9(6): 665–670CrossRefGoogle Scholar
  24. Li Y, Song Y, Chen X, Li J, Mamadjanov Y, Aminov J (2016). Geochemical composition of Tajikistan loess and its provenance implications. Palaeogeogr Palaeoclimatol Palaeoecol, 446: 186–194CrossRefGoogle Scholar
  25. Lu H, An Z, Liu H, Yang W (1998). Periodicity of east Asian winter and summer monsoon variation during the past 2500 ka recorded by loess deposits at Luochuan on the central Chinese loess plateau. Geological Review, 44(5): 553–558 (in Chinese)Google Scholar
  26. Lu S, Wang S, Chen Y (2015). Palaeopedogenesis of red palaeosols in Yunnan Plateau, southwestern China: pedogenical, geochemical and mineralogical evidences and palaeoenvironmental implication. Palaeogeogr Palaeoclimatol Palaeoecol, 420: 35–48CrossRefGoogle Scholar
  27. Lu Y, Sun J, Li P (2008). Predicting palaeoclimate since 140 Ma B.P. by experiment of carbon isotope in loess. Ganhanqu Ziyuan Yu Huanjing, 22(1): 60–63 (in Chinese)Google Scholar
  28. Meunier A, Caner L, Hubert F, El Albani A, Prét D (2013). The weathering intensity Scale(WIS): an alternative approach of the chemical index of alteration (CIA). Am J Sci, 313(2): 113–143Google Scholar
  29. Nesbitt H W, Young G M (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299 (5885): 715–717CrossRefGoogle Scholar
  30. Nieto F, Ortega-Huertas M, Peacor D R, Arostegui J (1996). Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin. Clays Clay Miner, 44(3): 304–323CrossRefGoogle Scholar
  31. Perederij V I (2001). Clay mineral composition and palaeoclimatic interpretation of the Pleistocene deposits of Ukraine. Quat Int, 76–77: 113–121CrossRefGoogle Scholar
  32. Petschick R, Kuhn G, Gingele F (1996). Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Deep-sea Geology, 130: 203–229Google Scholar
  33. Rao W, Li X, Gao Z, Luo T (2004). Distribution of fixed-NH4 +-N in Luochuan loess section. J Desert Res, 24(6): 685–688 (in Chinese)Google Scholar
  34. Rateev M A, Gorbunova Z N, Lisitzyn A P, Nosov G L (1969). The distribution of clay minerals in the oceans. Sedimentology, 13(1–2): 21–43CrossRefGoogle Scholar
  35. Schatz A, Scholten T, Kühn P (2015). Paleoclimate and weathering of the Tokaj (Hungary) loess–paleosol sequence. Palaeogeogr Palaeoclimatol Palaeoecol, 426: 170–182CrossRefGoogle Scholar
  36. Singer A (1984). The Palaeoclimatic interpretation of clay minerals in sediment—A review. Earth Sci Rev, 21(4): 251–293CrossRefGoogle Scholar
  37. Sun J, Liu T (2002). Pedostratigraphic subdivision of the loess-palaeosol sequences at Luochuan and a new interpretation on the palaeoenvironmental significance of L9 And L15. Quaternary Sciences, 22(5): 406–412 (in Chinese)Google Scholar
  38. Sun Y, Kutzbach J, An Z, Clemens S, Liu Z, Liu W, Liu X, Shi Z, Zheng W, Liang L, Yan Y, Li Y (2015). Astronomical and glacial forcing of East Asian summer monsoon variability. Quat Sci Rev, 115: 132–142CrossRefGoogle Scholar
  39. Sun Z, Owens P R, Han C, Chen H, Wang X, Wang Q (2016). A quantitative reconstruction of a loess–paleosol sequence focused on paleosol genesis: an example from a section at Chaoyang, China. Geoderma, 266: 25–39CrossRefGoogle Scholar
  40. Terhorst B, Kuhn P, Damm B, Hambach U, Meyer-Heintze S, Sedov S (2014). Paleoenvironmental fluctuations as recorded in the loesspaleosol sequence of the Upper Paleolithic site Krems-Wachtberg. Quat Int, 351: 67–82CrossRefGoogle Scholar
  41. Trindade MJ, Rocha F, Dias MI, Prudêncio MI (2013). Mineralogy and grain-size distribution of clay-rich rock units of the Algarve Basin (South Portugal). Clay Miner, 48(1): 59–83CrossRefGoogle Scholar
  42. Wang H, Zhou J (1998). On the indices of illite crystallinity. Acta Petrologica Sinica, 14(3): 395–405 (in Chinese)Google Scholar
  43. Xie Q, Chen T, Sun Y, Li X, Xu X (2008). Composition of ferric oxides in the Luochuan loess-red clay sequences on China’s loess plateau and its palaeoclimatic implications. Acta Mineralogica Sinica, 28(4): 389–396 (in Chinese)Google Scholar
  44. Xu Y, Hong H, He Y (2010). Clay mineralogy and its geological significance of sediments in the foreland basin of West Kunlun Mountains. Acta Sedimentologica Sinica, 28(4): 659–668 (in Chinese)Google Scholar
  45. Yang H, Pancost R D, Tang C, Ding W, Dang X, Xie S (2014). Distributions of isoprenoid and branched glycerol dialkanol diethers in Chinese surface soils and a loess–paleosol sequence: implications for the degradation of tetraether lipids. Org Geochem, 66: 70–79CrossRefGoogle Scholar
  46. Yang M, Zhang H, Lei G, Zhang W, Fan H, Chang F, Niu J, Chen Y (2006). Biomarkers in weakly developed palaeosol (L1SS1) in the Luochuan loess section and reconstructed palaeovegetation-environment during the interstade of the last glaciation. Quaternary Sciences, 26(6): 976–984 (in Chinese)Google Scholar
  47. Yuan B, Ba T, Cui J, Yin Q (1987). The relationship between gully development and climatic changes in the loess Yuan region: examples from Luochuan, Shaanxi Province. Acta Geogr Sin, 42 (4): 328–337 (in Chinese)Google Scholar
  48. Zhang H, Yang M, Zhang W, Lei G, Chang F, Pu Y, Fan H (2007). Diversification of biomarkers and vegetation of S4 palaeosol and the adjacency loess in the Luochuan loess section. Sci China Earth Sci, 37(12): 1634–1642 (in Chinese)Google Scholar
  49. Zheng H, Gu X, Han J, Deng B (1985). Clay minerals in loess of China and their tendency in loess section. Quaternary Sciences, 6(1): 158–165 (in Chinese)Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Changdok Won
    • 1
    • 2
  • Hanlie Hong
    • 1
    • 3
  • Feng Cheng
    • 1
  • Qian Fang
    • 1
  • Chaowen Wang
    • 4
  • Lulu Zhao
    • 1
  • Gordon Jock Churchman
    • 5
  1. 1.School of Earth SciencesChina University of GeosciencesWuhanChina
  2. 2.Kim Chaek University of TechnologyPyongyangKorea
  3. 3.State Key Laboratory of Biogeology and Environmental GeologyChina University of Geosciences (Wuhan)WuhanChina
  4. 4.Gemological InstituteChina University of Geosciences (Wuhan)WuhanChina
  5. 5.School of Agriculture, Food and WineThe University of AdelaideAdelaideAustralia

Personalised recommendations