Advertisement

Frontiers of Earth Science

, Volume 12, Issue 1, pp 108–124 | Cite as

Spatiotemporal changes in vegetation net primary productivity in the arid region of Northwest China, 2001 to 2012

Research Article

Abstract

Net primary productivity (NPP) is recognized as an important index of ecosystem conditions and a key variable of the terrestrial carbon cycle. It also represents the comprehensive effects of climate change and anthropogenic activity on terrestrial vegetation. In this study, the temporal-spatial pattern of NPP for the period 2001–2012 was analyzed using a remote sensing-based carbon model (i.e., the Carnegie-Ames-Stanford Approach, CASA) in addition to other methods, such as linear trend analysis, standard deviation, and the Hurst index. Temporally, NPP showed a significant increasing trend for the arid region of Northwest China (ARNC), with an annual increase of 2.327 g C. Maximum and minimum productivity values appeared in July and December, respectively. Spatially, the NPP was relatively stable in the temperate and warm-temperate desert regions of Northwest China, while temporally, it showed an increasing trend. However, some attention should be given to the northwestern warm-temperate desert region, where there is severe continuous degradation and only a slight improvement trend.

Keywords

NPP CASA model remote sensing arid region of Northwest China (ARNC) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almorox J, Hontoria C (2004). Global solar estimation using sunshine duration in Spain. Energy Convers Manage, 45(9–10): 1529–1535CrossRefGoogle Scholar
  2. Angström A (1924). Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quart J Roy Met Soc, 50 (210): 121–126CrossRefGoogle Scholar
  3. Calvão T, Palmeirim J M (2004). Mapping mediterranean scrub with satellite imagery: biomass estimation and spectral behaviour. Int J Remote Sens, 25(16): 3113–3126CrossRefGoogle Scholar
  4. Cao M, Prince S D, Small J, Goetz S J (2004). Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981–2000. Ecosyst, 7(3): 233–242CrossRefGoogle Scholar
  5. Chen F J, Shen Y J, Li Q, Guo Y, Xu L M (2011). Spatio-temporal variation analysis of ecological systems NPP in China in past 30 years. Sci Geogr Sin, 31(11): 1409–1414 (in Chinese)Google Scholar
  6. Esser R, Fineschi S, Dobrzycka D, Habbal S R, Edgar R J, Raymond J C, Kohl J L, Guhathakurta M (1999). Plasma properties in coronal holes derived from measurements of minor ion spectral lines and polarized white light intensity. Astrophys J, 510(1): 63–67CrossRefGoogle Scholar
  7. Eswaran H, Lal R, Reich P F (2001). Land degradation: an overview. In: Bridges E M, Hannam I D, Oldeman L R, Pening de Vries F W T, Scherr S J, Sompatpanit S, eds. Responses to Land Degradation. Proceedings of the 2nd International Conference on Land Degradation and Desertification, Khon Kaen, Thailand. New Delhi: Oxford Press, 20–35Google Scholar
  8. Fang J Y, Piao S L, Field C B, Pan Y D, Guo Q H, Zhou LM, Peng C H, Tao S (2003). Increasing net primary production in China from 1982 to 1999. Front Ecol Environ, 1(6): 293–297CrossRefGoogle Scholar
  9. Field C B, Randerson J T, Malmström C M (1995). Global net primary production: combining ecology and remote sensing. Remote Sens Environ, 51(1): 74–88CrossRefGoogle Scholar
  10. Guo Z X, Wang ZM, Zhang B, Liu DW, Yang G, Song K S, Li F (2008). Analysis of temporal-spatial characteristics and factors influencing vegetation NPP in northeast China from 2000 to 2006. Resources Science, 30(8): 1226–1235 (in Chinese)Google Scholar
  11. Haxeltine A, Prentice I C (1996). BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types. Global Biogeochem Cycles, 10(4): 693–709CrossRefGoogle Scholar
  12. He Y, Dong W J, Guo X Y, Cao L J, Feng D (2006). Terrestrial NPP variation in the region of the South-North Water Diversion Project (East Route). Adv Clim Change Res, 2(5): 246–249 (in Chinese)Google Scholar
  13. Hicke J A, Asner G P, Randerson J T, Tucker C, Los S, Birdsey R, Jenkins J C, Field C, Holland E (2002b). Setellite-derived increases in net primary productivity across North America, 1982–1998. Geophys Res Lett, 29(10): 69–1–69-4CrossRefGoogle Scholar
  14. Hicke J A, Asner G P, Randerson J T, Tuker C, Los S, Birdsey R, Jenkins J C, Field C (2002a). Trends in North American net primary productivity derived from satellite observations, 1982–1998. Glob Biogeochem Cy, 16(2): 2–1–2-14CrossRefGoogle Scholar
  15. Holben B N (1986). Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens, 7(11): 1417–1434CrossRefGoogle Scholar
  16. Hurst H E (1951). Long term storage capacity of reservoirs. Trans Am Soc Civ Eng, 116(12): 776–808Google Scholar
  17. Jiang R Z, Li X Q, Zhu Y G, Zhang G Z (2011). Spatial-temporal variation of NPP and NDVI correlation in wetland of Yellow River Delta based on MODIS data. Acta Ecol Sin, 31(22): 6708–6716 (in Chinese)Google Scholar
  18. Knorr W, Heimann M (1995). Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model. Tellus B Chem Phys Meterol, 47 (4): 471–489CrossRefGoogle Scholar
  19. Li E Z, Tan K, Du P J, Jiang D E (2013a). Net primary productivity of vegetation estimation and correlation analysis based on multitemporal remote sensing data in Xuzhou. Remote Sensing Technology and Application, 28(4): 689–696 (in Chinese)Google Scholar
  20. Li J, Cui Y P, Liu J Y, Shi W J, Qin Y C (2013b). Estimation and analysis of net primary productivity by integrating MODIS remote sensing data with a light use efficiency model. Ecol Modell, 252(1): 3–10CrossRefGoogle Scholar
  21. Li J, You S C, Huang J F (2006). Spatial interpolation method and spatial distribution characteristics of monthly mean temperature in China during 1961–2000. Ecol Environ, 15(1): 109–114 (in Chinese)Google Scholar
  22. Lin H L (2009). A new model of grassland net primary productivity (NPP) based on the integrated orderly classification system of grassland. The sixth international conference on fuzzy systems and knowledge discovery. Tianjin, China, 52–56Google Scholar
  23. Liu C M, Chen Y N, Xu Z X (2010). Eco-hydrology and sustainable development in the arid regions of China. Hydrol Processes, 24(2): 127–128Google Scholar
  24. Liu C Y, Dong X F, Liu Y Y (2015). Changes of NPP and their relationship to climate factors based on the transformation of different scales in Gansu, China. Catena, 125: 190–199CrossRefGoogle Scholar
  25. Liu J Y, Liu M L, Zhuang D F, Zhang Z X, Deng X Z (2003). Study on spatial pattern of land-use change in China during 1995–2000. Sci China Ser D, 46(4): 373–384CrossRefGoogle Scholar
  26. Liu Y A, Huang B, Yi C G, Cheng T, Yu J, Qu L A (2013). Simulation by remote sensing and analysis of net primary productivity of vegetation based on topographical correction. Trans Chin Soc of Agric Eng, 29: 130–141 (in Chinese)Google Scholar
  27. Malmström C M, Thompson M V, Juday G P, Los S O, Randerson J T, Field C B (1997). Interannual variation in global-scale net primary production: testing model estimates. Global Biogeochem Cycles, 11 (3): 367–392CrossRefGoogle Scholar
  28. Mao D H, Luo L, Wang Z M, Zhang C H, Ren C Y (2015). Variations in net primary productivity and its relationships with warming climate in the permafrost zone of the Tibetan Plateau. J Geogr Sci, 25(8): 967–977CrossRefGoogle Scholar
  29. Matsushita B, Tamura M (2002). Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia. Remote Sens Environ, 81(1): 58–66CrossRefGoogle Scholar
  30. Moleele N, Ringrose S, Arnberg W, Lunden B, Vanderpost C (2001). Assessment of vegetation indexes useful for browse (forage) prediction in semi-arid rangelands. Int J Remote Sens, 22(5): 741–756CrossRefGoogle Scholar
  31. Mu S J, Chen Y Z, Li J L, Ju W M, Odeh I O A, Zou X L (2013a). Grassland dynamics in response to climate change and human activities in Inner Mongolia, China between 1985 and 2009. Rangeland J, 35(3): 315–329CrossRefGoogle Scholar
  32. Mu S J, Li J L, Zhou W, Yang H F, Zhang C B, Ju WM (2013c). Spatialtemporal distribution of net primary productivity and its relationship with climate factors in Inner Mongolia from 2001 to 2010. Acta Ecol Sin, 33(12): 3752–3764 (in Chinese)CrossRefGoogle Scholar
  33. Mu S J, Zhou S X, Chen Y Z, Li J L, Ju W M, Odeh I O A (2013b). Assessing the impact of restoration-induced land conversion and management alternatives on net primary productivity in Inner Mongolian grassland, China. Global Planet Change, 108(3): 29–41CrossRefGoogle Scholar
  34. Nemani R R, Keeling C D, Hashimoto H, Jolly W M, Piper S C, Tucker C J, Myneni R B, Running S W (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625): 1560–1563CrossRefGoogle Scholar
  35. Niklaus M, Eisfelder C, Tum M, Günther K P (2012). A remote sensing model based land degradation index for the arid and semi-arid regions of southern Africa. IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2012. 22e27 July 2012, Munich, GermanyGoogle Scholar
  36. Parton W J, Scurlock J M O, Ojıma D S, Gilmanov T G, Scholes R J, Schimel D S, Kirchner T, Menaut J C, Seastedt T, Garcia Moya E, Kamnalrut A, Kinyamario J I (1993). Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem Cycles, 7(4): 785–809CrossRefGoogle Scholar
  37. Pei F S, Li X, Liu X P, Lao C H (2013). Assessing the impacts of droughts on net primary productivity in China. J Environ Manage, 114(2): 362–371CrossRefGoogle Scholar
  38. Piao S L, Ciais P, Huang Y, Shen Z H, Peng S S, Li J S, Zhou L P, Liu H Y, Ma Y C, Ding Y H, Friedlingstein P, Liu C Z, Tan K, Yu Y Q, Zhang T Y, Fang J Y (2010). The impacts of climate change on water resources and agricultural in China. Nature, 467(7311): 43–51CrossRefGoogle Scholar
  39. Piao S L, Fang J Y, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). The carbon balance of terrestrial ecosystems in China. Nature, 458 (7241): 1009–1013CrossRefGoogle Scholar
  40. Piao S L, Fang J Y, He J S (2006). Variations in vegetation net primary production in the Qinghai-Xizang plateau, China, from 1982 to 1999. Clim Change, 74(1–3): 253–267CrossRefGoogle Scholar
  41. Piao S L, Fang J Y, Zhou L M, Zhu B, Tan K, Tao S (2005). Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochem Cycles, 19(2): 1605–1622CrossRefGoogle Scholar
  42. Potter C, Klooster S, Myneni R, Genovese V, Tan P N, Kumar V (2003). Continental-scale comparisons of terrestrial carbon sinks estimated from satellitedata and ecosystem modeling 1982–1998. Global Planet Change, 39(3–4): 201–213CrossRefGoogle Scholar
  43. Potter C, Klooster S, Steinbach M, Tan P N, Kumar V, Shekhar S, Carvalho C R D (2004). Understanding global teleconnections of climate to regional model estimates of Amazon ecosystem carbon fluxes. Glob Change Biol, 10(5): 693–703CrossRefGoogle Scholar
  44. Potter C S, Randerson J T, Field C B, Matson P A, Vitousek P A, Mooney H A, Klooster S A (1993). Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles, 7(4): 811–841CrossRefGoogle Scholar
  45. Prescott J A (1940). Evaporation from a water surface in relation to solar radiation. Trans R Soc S Aust, 64: 114–125Google Scholar
  46. Prince S D (1991). A model of regional primary production for use with coarse resolution satellite data. Int J Remote Sens, 12(6): 1313–1330CrossRefGoogle Scholar
  47. Prince S D, Goward S N (1995). Global primary production: a remote sensing approach. J Biogeogr, 22(4/5): 815–835CrossRefGoogle Scholar
  48. Rayner P J, Scholze M, Knorr W, Kaminski T, Giering R, Widmann H (2005). Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Global Biogeochem Cycles, 19 (2): 202–214CrossRefGoogle Scholar
  49. Reeves M C, Moreno A L, Bagne K E, Running S W (2014). Estimating climate change effects on net primary production of rangelands in the United States. Clim Change, 126(3–4): 429–442CrossRefGoogle Scholar
  50. Ren Z Y, Liu Y X (2013). Contrast in vegetation net primary productivity estimation models and ecological effect value evaluation in Northwest China. Chin. J Eco-Agric, 21(4): 494–502 (in Chinese)Google Scholar
  51. Ruimy A, Dedieu G, Saugier B (1996). TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochem Cycles, 10(2): 269–285CrossRefGoogle Scholar
  52. Running S W, Nemani R R, Heinsch F A, Zhao M S, Reeves M, Hashimoto H (2004). A continuous satellite-derived measure of global terrestrial primary production. Bioscience, 54(6): 547–560CrossRefGoogle Scholar
  53. Running S W, Thornton P E, Nemani R, Glassy J M (2000). Global terrestrial gross and net primary productivity from the earth observing system. In: Sala O E, Jackson R B, Mooney H A, Howarth RW, eds. Methods in Ecosystem Science. New York: Springer, 44–57CrossRefGoogle Scholar
  54. Sellers P J, Randall D A, Collatz G J, Berry J A, Field C B, Dazlich D A, Zhang C, Collelo G D, Bounoua L (1996). A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 1: model formulation. J Clim, 9(4): 676–705CrossRefGoogle Scholar
  55. Silvestri S, Marani M, Settle J, Benvenuto F, Marani A (2002). Salt marsh vegetation radiometry: data analysis and scaling. Remote Sens Environ, 80(3): 473–482CrossRefGoogle Scholar
  56. Stow D A V, Petersen A, Hope A, Engstrom R, Coulter L L (2007). Greenness trends of Arctic tundra vegetation in the 1990s: Comparison of two NDVI datasets from NOAA AVHRR system. Int J Remote Sens, 28(21): 4807–4822CrossRefGoogle Scholar
  57. Sun Q L, Feng X F, Liu M X, Xiao X (2015). Estimation and analysis of net primary productivity in Wuling mountainous area based on remote sensing. Journal of Natural Resources, 347: 83–95 (in Chinese)Google Scholar
  58. Tang C J, Fu X Y, Jiang D, Fu J Y, Zhang X Y, Zhou S (2014). Simulating spatiotemporal dynamics of Sichuan grassland net primary productivity using the CASA model and in situ observations. Sci World J, 2014: 956963Google Scholar
  59. UN (1994). Elaboration of an International Convention to Combat Desertification in Countries Experiencing Serious Drought and/or Desertification, Particularly in Africa. UN General Assembly. A/AC.241/27. Available online at: http://www.unccd.int/convention/ text/pdf/conv-eng.pdf (accessed 17.03.10)Google Scholar
  60. Verstraete M M (1986). Defining desertification: a review. Clim Change, 9(1–2): 5–18CrossRefGoogle Scholar
  61. Wang H, Li X B, Long H L, Gai Y Q, Wei D D (2009). Monitoring the effects of land use and cover changes on net primary production: a case study in China’s Yongding River basin. For Ecol Manage, 258 (12): 2654–2665CrossRefGoogle Scholar
  62. Wang P J, Xie D H, Zhou Y Y, E Y H, Zhu Q J (2014). Estimation of net primary productivity using a process-based model in Gansu Province, Northwest China. Environ Earth Sci, 71(2): 647–658CrossRefGoogle Scholar
  63. Wang X C, Wang S D, Zhang H B (2013). Spatiotemporal pattern of vegetation net primary productivity in Henan Province of China based on MOD17A3. Chinese J Ecol, 32(10): 2797–2805 (in Chinese)Google Scholar
  64. Woodward F I, Smith T M, Emanuel WR (1995). A global land primary productivity and phytogeography model. Global Biogeochem Cycles, 9(4): 471–490CrossRefGoogle Scholar
  65. Xie B N, Qin Z F, Wang Y, Chang Q R (2014). Spatial and temporal variation in terrestrial net primary productivity on Chinese Loess Plateau and its influential factors. Transactions of the Chinese Society of Agricultural Engineering, 30(11): 244–253 (in Chinese)Google Scholar
  66. Xu J H (2010). Geographic Modeling Method. Beijing: Science Press (in Chinese)Google Scholar
  67. Yu D Y, Shao H B, Shi P J, Zhu W Q, Pan Y Z (2009). How does the conversion of land cover to urban use affect net primary productivity? A case study in Shenzhen city, China. Agric Meteorol, 149(11): 2054–2060CrossRefGoogle Scholar
  68. Yu D Y, Shi P J, Han G Y, Zhu W Q, Du S Q, Xun B (2011). Forest ecosystem restoration due to a national conservation plan in China. Ecol Eng, 37(9): 1387–1397CrossRefGoogle Scholar
  69. Zhao G S, Wang J B, Fan WY, Ying T Y (2011). Vegetation net primary productivity in Northeast China in 2000–2008: simulation and seasonal change. Chinese J Appl Ecol, 22(3): 621–630 (in Chinese)Google Scholar
  70. Zhao S Q (1983). A new scheme for comprehensive physical regionalization in China. Acta Geogr Sin, 38(1): 1–10 (in Chinese)Google Scholar
  71. Zheng S H, Zhao M L, Shan D, Pan L R, Han G D (2005). Range condition and its evaluation. Grassland of China, 27(2): 72–76 (in Chinese)Google Scholar
  72. Zhou W, Gang C C, Zhou L, Chen Y Z, Li J L, Ju W M, Odeh I (2014). Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China. Acta Oecol, 55(2): 86–96CrossRefGoogle Scholar
  73. Zhu W Q, Pan Y Z, Long Z H, Chen Y H, Li J, Hu H B (2005). Estimating net primary productivity of terrestrial vegetation based on GIS and RS: a case study in Inner Mongolia, China. J Remote Sens, 9 (3): 300–307 (in Chinese)Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.College of Geographic and Environmental ScienceNorthwest Normal UniversityLanzhouChina

Personalised recommendations