Frontiers of Earth Science

, Volume 12, Issue 1, pp 95–107 | Cite as

Impact of water depth on the distribution of iGDGTs in the surface sediments from the northern South China Sea: applicability of TEX86 in marginal seas

  • Jiali Chen
  • Pengju Hu
  • Xing Li
  • Yang Yang
  • Jinming Song
  • Xuegang Li
  • Huamao Yuan
  • Ning Li
  • Xiaoxia Lü
Research Article

Abstract

The TEX 86 H paleothermometer on the base of isoprenoid glycerol dialkyl glycerol tetraethers (iGDGTs) has been widely applied to various marine settings to reconstruct past sea surface temperatures (SSTs). However, it remains uncertain how well this proxy reconstructs SSTs in marginal seas. In this study, we analyze the environmental factors governing distribution of iGDGTs in surface sediments to assess the applicability of TEX 86 H paleothermometer in the South China Sea (SCS). Individual iGDGT concentrations increase gradually eastwards. Redundancy analysis based on the relative abundance of an individual iGDGT compound and environmental parameters suggests that water depth is the most influential factor to the distribution of iGDGTs, because thaumarchaeota communities are water-depth dependent. Interestingly, the SST difference (ΔT) between TEX 86 H derived temperature and remote-sensing SST is less than 1°C in sediments with water depth>200 m, indicating that TEX 86 H was the robust proxy to trace the paleo-SST in the region if water depth is greater than 200 m.

Keywords

iGDGTs distribution South China Sea (SCS) sea surface temperature water depth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank each member of the organic geochemistry group in the State Key Laboratory of Biogeology and Environmental Geology for technical support. We also thank Y. Qin, X. Chen and L. Gong from China University of Geosciences for help with data processing. We also thank Changbing Yang and Angelo R. Yang from The University of Texas in Austin for the language polishing. The research was funded by the National Natural Science Foundation of China (Grant No. 41376090), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA11020102), The Project of China Geological Survey (DD20160138), and Marine Safeguard Project (GZH201200503).

References

  1. Basse A, Zhu C, Versteegh G J M, Fischer G, Hinrichs K, Mollenhauer G (2014). Distribution of intact and core tetraether lipids in water column profiles of suspended particulate matter off Cape Blanc, NW Africa. Org Geochem, 72: 1–13CrossRefGoogle Scholar
  2. De Rosa M, Esposito E, Gambacorta A, Nicolaus B, Bu’Lock J D (1980). Effects of temperature on ether lipid composition of Caldariella acidophila. Phytochemistry, 19(5): 827–831CrossRefGoogle Scholar
  3. Francis C A, Roberts K J, Beman J M, Santoro A E, Oakley B B (2005). Ubiquity and diversity of ammonia oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA, 102(41): 14683–14688CrossRefGoogle Scholar
  4. Ge H, Zhang C, Dang H, Zhu C, Jia G (2013). Distribution of tetraether lipids in surface sediments of the northern South China Sea: implications for TEX86 proxies. Geoscience Frontiers, 4(2): 223–229CrossRefGoogle Scholar
  5. Gliozzi A, Paoli G, De Rosa M, Gambacorta A (1983). Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria. Biochimica et Biophysica Acta (BBA) - Biomembranes, 735(2): 234–242CrossRefGoogle Scholar
  6. Hallam S J, Konstantinidis K T, Putnam N, Schleper C, Watanabe Y, Sugahara J, Preston C, de la Torre J, Richardson P M, De Long E F (2006). Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA, 103(48): 18296–18301CrossRefGoogle Scholar
  7. Herndl G J, Reinthaler T, Teira E, van Aken H, Veth C, Pernthaler A, Pernthaler J (2005). Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol, 71(5): 2303–2309CrossRefGoogle Scholar
  8. Hopmans E C, Weijers JWH, Schefuß E, Herfort L, Sinninghe Damsté J S, Schouten S (2004). A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett, 224(1-2): 107–116CrossRefGoogle Scholar
  9. Hu A, Jiao N, Zhang C (2011). Community structure and function of planktonic Crenarchaeota: changes with depth in the South China Sea. Microb Ecol, 62(3): 549–563CrossRefGoogle Scholar
  10. Hu J, Kawamura H, Hong H S, Qi Y (2000). Review on the currents in the South China Sea seasonal circulation South China Sea warm current and Kuroshio Intrusion. J Oceanogr, 56(6): 607–624CrossRefGoogle Scholar
  11. Huguet C, Hopmans E C, Febo-Ayala W, Thompson D H, Sinninghe Damste’ J S, Schouten S (2006). An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem, 37(9): 1036–1041CrossRefGoogle Scholar
  12. Jia G, Zhang J, Chen J, Peng P, Zhang C (2012). Archaeal tetraether lipids record subsurface water temperature in the South China Sea. Org Geochem, 50: 68–77CrossRefGoogle Scholar
  13. Karner M B, De Long E F, Karl D M (2001). Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409(6819): 507–510CrossRefGoogle Scholar
  14. Kim J H, Schouten S, Rodrigo-Gámiz M, Rampen S, Marino G, Huguet C, Helmke P, Buscai R, Hopmans E, Pross J, Sangiorgi F, Middelburg J B M, Sinninghe Damsté J S (2015). Influence of deep-water derived isoprenoid tetraether lipids on the paleothermometer in the Mediterranean Sea. Geochim Cosmochim Acta, 150: 125–141CrossRefGoogle Scholar
  15. Kim J H, van der Meer J, Schouten S, Helmke P, Willmott V, Sangiorgi FKoç N, Hopmans E C, Damsté J S S (2010). New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim Cosmochim Acta, 74(16): 4639–4654CrossRefGoogle Scholar
  16. Li F Y (1988). Determination of recent sedimentation rates by 210Pb method in the South China Sea. Mark Sci, 3: 64–66Google Scholar
  17. Li F Y, Yuan W (1991). Profile model of 210Pb in the South China Sea, South Huanghai Sea and Bohai Sea. Mar Geol & Quaternary Geol, 11(3): 35–43 (in Chinese)Google Scholar
  18. Liu K K, Chao S Y, Shaw P T, Gong G C, Chen C C, Tang T Y (2002). Monsoon-forces chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep Sea Res Part I Oceanogr Res Pap, 49(8): 1387–1412CrossRefGoogle Scholar
  19. Lü X, Yang H, Song J, Versteegh G J M, Li X, Yuan H, Li N, Yang Y, Ding W, Xie S (2014). Sources and distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) in sediments from the east coastal sea of China: application of GDGT-based paleothermometry to a shallow marginal sea. Org Geochem, 75: 24–35CrossRefGoogle Scholar
  20. Murray A E, Blakis A, Massana R, Strawzewski S, Passow U, Alldredge A, Delong E F (1999). A time series assessment of planktonic archaealvariability in the Santa Barbara Channel. Aquat Microb Ecol, 20: 129–145CrossRefGoogle Scholar
  21. Ose T, Song Y K, Kitoh A (1997). Sea surface temperature in the South China Sea—An index for the Asian monsoon and ENSO system. J Meteorol Soc Jpn, 75: 1091–1107CrossRefGoogle Scholar
  22. Pernthaler A, Preston C M, Pernthaler J, De Long E F, Amann R (2002). Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Appl Environ Microbiol, 68(2): 661–667CrossRefGoogle Scholar
  23. Pester M, Schleper C, Wagner M (2011). The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol, 14(3): 300–306CrossRefGoogle Scholar
  24. Peterse F, Kim J H, Schouten S, Kristensen D K, Koc N, Sinninghe Damsté J S (2009). Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway). Organic Geochemistry, 40: 692–699CrossRefGoogle Scholar
  25. Powers L, Werne J P, Vanderwoude A J, Sinninghe Damsté J S, Hopmans E C, Schouten S (2010). Applicability and calibration of the TEX86 paleothermometer in lakes. Org Geochem, 41(4): 404–413CrossRefGoogle Scholar
  26. Qu T D (2001). Role of ocean dynamics in determining the mean seasonal cycle of the South China Sea surface temperature. J Geophys Res, 106(C4): 6943–6955CrossRefGoogle Scholar
  27. Schouten S, Hopmans E C, Schefuß E, Sinninghe Damste J S (2002). Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett, 204(1): 265–274CrossRefGoogle Scholar
  28. Schouten S, Huguet C, Hopmans E C, Kienhuis MM, Sinninghe Damste J S (2007). Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal Chem, 79(7): 2940–2944CrossRefGoogle Scholar
  29. Schouten S, Pitcher A, Hopmans E C, Villanueva L, van Bleijswijk J, Sinninghe Damsté J S (2012). Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone: I. Selective preservation and degradation in the water column and consequences for the TEX86. Geochim Cosmochim Acta, 98: 228–243Google Scholar
  30. Shah S R, Mollenhauer G, Ohkouchi N, Eglinton T I, Pearson A (2008). Origins of archaeal tetraether lipids in sediments: insights from radiocarbon analysis. Geochim Cosmochim Acta, 72(18): 4577–4594CrossRefGoogle Scholar
  31. Shen S, Lau M K (1995). Biennial oscillation associated with the East Asian summer monsoon and tropical sea surface temperatures. J Meteorol Soc Jpn, 73(1): 105–124CrossRefGoogle Scholar
  32. Shintani T, Yamamoto M, Chen M T (2011). Paleoenvironmental changes in the northern South China Sea over the past 28,000 years: a study of TEX86-derived sea surface temperatures and terrestrial biomarkers. Journal of Asian Earth Science, 40(6): 1221–1229CrossRefGoogle Scholar
  33. Sinninghe Damsté JS, Ossebaar J, Abbas B, Schouten S, Verschuren D (2009). Fluxes and distribution of tetraether lipids in an equatorial African lake: constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings. Geochimica et Cosmochimica Acta 73: 4232–4249CrossRefGoogle Scholar
  34. Taylor KWR, Huber M, Hollis C J, Hernandez-Sanchez MT, Pancost R D (2013). Re-evaluating modern and Palaeogene GDGT distributions: implications for SST reconstructions. Global Planet Change, 108: 158–174CrossRefGoogle Scholar
  35. Turich C, Freeman K H (2011). Archaeal lipids record paleosalinity in hypersaline systems. Org Geochem, 42: 1147–1157Google Scholar
  36. Turich C, Freeman K H, Bruns MA, Conte M, Jones A D, Wakeham S G (2007). Lipids of marine Archaea: patterns and provenance in the water-column and sediments. Geochim Cosmochim Acta, 71(13): 3272–3291CrossRefGoogle Scholar
  37. Villanueva L, Schouten S, Sinninghe Damste’ J S (2014). Depth-related distribution of a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota. Environ Microbiol, 10(17): 3527–3539Google Scholar
  38. Walsh E M, Ingalls A E, Keil R G (2008). Sources and transport of terrestrial organic matter in Vancouver Island fjords and the Vancouver–Washington Margin: a multiproxy approach using d13Corg, lignin phenols, and the ether lipid BIT index. Limnol Oceanogr, 53(3): 1054–1063CrossRefGoogle Scholar
  39. Wang J X, Wei Y L, Wang P, Hong Y H, Zhang C L (2015). Unusually low TEX86 values in the transitional zone between Pearl River estuary and coastal South China Sea: impact of changing archaeal community composition. Chem Geol, 402: 18–29CrossRefGoogle Scholar
  40. Weber Y, De Jonge C, Rijpstra W I C, Hopmans E C, Stadnitskaia A, Schubert C J, Lehmann M F, Sinninghe Damsté J S, Niemann H (2015). Identification and carbon isotope composition of a novel branched GDGT isomer in lake sediments: evidence for lacustrine branched GDGT production. Geochim Cosmochim Acta, 154: 118–129CrossRefGoogle Scholar
  41. Wei Y, Wang J, Liu J, Dong L, Li L, Wang H, Wang P, Zhao M, Zhang C (2011). Spatial variations in Archaeal lipids of surface water and core-top sediments in the South China Sea and their implications for Paleoclimate studies. Appl Environ Microbiol, 77(21): 7479–7489CrossRefGoogle Scholar
  42. Weijers J W H, Schouten S, van den Donker J C, Hopmans E C, Sinninghe Damsté J S (2007). Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Ac, 71(3): 703–713CrossRefGoogle Scholar
  43. Wuchter C, Schouten S (2005). Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter: implications for TEX86 paleothermometry. Paleoceanography, 20: PA3013CrossRefGoogle Scholar
  44. Wuchter C, Schouten S, Coolen M J L, Sinninghe Damsté J S (2004). Temperature dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: implications for TEX86 paleothermometry. Paleoceanography, 19, PA4028CrossRefGoogle Scholar
  45. Xie W, Zhang C L, Zhou X D, Wang P (2014). Salinity-dominated change in community structure and ecological function of Archaea from the lower Pearl River to coastal South China Sea. Appl Microbiol Biotechnol, 98(18): 7971–7982CrossRefGoogle Scholar
  46. Yang H, Pancost R D, Tang C, Ding W, Dang X, Xie S (2014). Distributions of isoprenoid and branched glycerol dialkanol diethers in Chinese surface soils and a loess–paleosol sequence: implications for the degradation of tetraether lipids. Org Geochem, 66: 70–79CrossRefGoogle Scholar
  47. Zell C, Kim J-H, Dorhout D, Baas M, Sinninghe Damsté J S (2015). Sources and distributions of branched tetraether lipids and crenarchaeol along the Portuguese continental margin: implications for the BIT index. Cont Shelf Res, 96: 34–44CrossRefGoogle Scholar
  48. Zhang C L, Wang J X, Wei Y L, Zhu C, Huang L Q, Dong H L (2012). Production of branched tetraether lipids in the lower Pearl River and estuary: effects of extraction methods and impact on bGDGT proxies. Front Microbiol, 2(274): 1–18Google Scholar
  49. Zhou H, Hu J, Spiro B, Peng P, Tang J (2014). Glycerol dialkyl glycerol tetraethers in surficial coastal and open marine sediments around China: indicators of sea surface temperature and effects of their sources. Palaeogeogr Palaeoclimatol Palaeoecol, 395: 114–121CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  • Jiali Chen
    • 1
    • 2
    • 5
  • Pengju Hu
    • 1
    • 2
  • Xing Li
    • 1
    • 3
  • Yang Yang
    • 1
  • Jinming Song
    • 4
  • Xuegang Li
    • 4
  • Huamao Yuan
    • 4
  • Ning Li
    • 4
  • Xiaoxia Lü
    • 1
    • 3
  1. 1.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanChina
  2. 2.Faculty of Earth SciencesChina University of GeosciencesWuhanChina
  3. 3.College of Marine Science and TechnologyChina University of GeosciencesWuhanChina
  4. 4.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  5. 5.No.5 Middle School of Nan ChangNanchangChina

Personalised recommendations