Three-dimensional flower-like SnS2-supported bimetallic zeolite imidazole compound with enhanced electrocatalytic activity for methanol oxidation

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Das A K, Layek R K, Kim N H, et al. Reduced graphene oxide (RGO)-supported NiCo2O4 nanoparticles: An electrocatalyst for methanol oxidation. Nanoscale, 2014, 6(18): 10657–10665

    CAS  Google Scholar 

  2. [2]

    Wang Y, Leung D Y C, Xuan J, et al. A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells. Renewable & Sustainable Energy Reviews, 2016, 65: 961–977

    CAS  Google Scholar 

  3. [3]

    Kongkanand A, Mathias M F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. The Journal of Physical Chemistry Letters, 2016, 7(7): 1127–1137

    CAS  Google Scholar 

  4. [4]

    Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486(7401): 43–51

    CAS  Google Scholar 

  5. [5]

    Kruusenberg I, Ratso S, Vikkisk M, et al. Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell. Journal of Power Sources, 2015, 281: 94–102

    CAS  Google Scholar 

  6. [6]

    Thomas S. Direct methanol fuel cells: Progress in cell performance and cathode research. Electrochimica Acta, 2002, 47(22–23): 3741–3748

    CAS  Google Scholar 

  7. [7]

    Huang H, Wang X. Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(18): 6266–6291

    CAS  Google Scholar 

  8. [8]

    Liu M, Zhang R, Chen W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chemical Reviews, 2014, 114(10): 5117–5160

    CAS  Google Scholar 

  9. [9]

    Meng H, Zeng D, Xie F. Recent development of Pd-based electrocatalysts for proton exchange membrane fuel cells. Catalysts, 2015, 5(3): 1221–1274

    CAS  Google Scholar 

  10. [10]

    Tsang CHA, Hui K N, Hui K S, et al. Deposition of Pd/graphene aerogel on nickel foam as a binder-free electrode for direct electro-oxidation of methanol and ethanol. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(42): 17986–17993

    CAS  Google Scholar 

  11. [11]

    Bedolla-Valdez Z I, Verde-Gómez Y, Valenzuela-Muñiz A M, et al. Sonochemical synthesis and characterization of Pt/CNT, Pt/TiO2, and Pt/CNT/TiO2 electrocatalysts for methanol electro-oxidation. Electrochimica Acta, 2015, 186: 76–84

    CAS  Google Scholar 

  12. [12]

    Xia Z, Zhang X, Sun H, et al. Recent advances in multi-scale design and construction of materials for direct methanol fuel cells. Nano Energy, 2019, 65: 104048

    CAS  Google Scholar 

  13. [13]

    Kakati N, Maiti J, Lee S H, et al. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru? Chemical Reviews, 2014, 114(24): 12397–12429

    CAS  Google Scholar 

  14. [14]

    Arulmani D V, Eastcott J I, Mavilla S G, et al. Photo-enhanced activity of Pt and Pt-Ru catalysts towards the electro-oxidation of methanol. Journal of Power Sources, 2014, 247: 890–895

    CAS  Google Scholar 

  15. [15]

    Shih Z Y, Periasamy A P, Hsu P C, et al. Synthesis and catalysis of copper sulfide/carbon nanodots for oxygen reduction in direct methanol fuel cells. Applied Catalysis B: Environmental, 2013, 132–133: 363–369

    Google Scholar 

  16. [16]

    Polo A S, Santos M C, de Souza R F B, et al. Pt-Ru-TiO2 photoelectrocatalysts for methanol oxidation. Journal of Power Sources, 2011, 196(2): 872–876

    CAS  Google Scholar 

  17. [17]

    Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental, 2005, 56(1–2): 9–35

    CAS  Google Scholar 

  18. [18]

    Tian X L, Wang L, Deng P, et al. Research advances in unsupported Pt-based catalysts for electrochemical methanol oxidation. Journal of Energy Chemistry, 2017, 26(6): 1067–1076

    Google Scholar 

  19. [19]

    Zhang H, Liu X, Wu Y, et al. MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chemical Communications, 2018, 54(42): 5268–5288

    CAS  Google Scholar 

  20. [20]

    Cui X, Xiao P, Wang J, et al. Highly branched metal alloy networks with superior activities for the methanol oxidation reaction. Angewandte Chemie International Edition in English, 2017, 56(16): 4488–4493

    CAS  Google Scholar 

  21. [21]

    Liu P, Hu Y, Liu X, et al. Cu and Co nanoparticle co-decorated N-doped graphene nanosheets: A high efficiency bifunctional electrocatalyst for rechargeable Zn-air batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(20): 12851–12858

    CAS  Google Scholar 

  22. [22]

    Liu J, Ma Q, Huang Z, et al. Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications. Advanced Materials, 2019, 31(9): 1800696

    Google Scholar 

  23. [23]

    Sun S, Li H, Xu Z J. Impact of surface area in evaluation of catalyst activity. JOULE, 2018, 2(6): 1024–1027

    Google Scholar 

  24. [24]

    He L, Liu Y, Liu J, et al. Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angewandte Chemie International Edition in English, 2013, 52 (13): 3741–3745

    CAS  Google Scholar 

  25. [25]

    Shang L, Bian T, Zhang B, et al. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: Robust catalysts for oxidation and reduction reactions. Angewandte Chemie International Edition in English, 2014, 53(1): 250–254

    CAS  Google Scholar 

  26. [26]

    Wang D, Xin H L, Yu Y, et al. Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction. Journal of the American Chemical Society, 2010, 132(50): 17664–17666

    CAS  Google Scholar 

  27. [27]

    Chen Y, Yang J, Yang Y, et al. A facile strategy to synthesize three-dimensional Pd@Pt core-shell nanoflowers supported on graphene nanosheets as enhanced nanoelectrocatalysts for methanol oxidation. Chemical Communications, 2015, 51(52): 10490–10493

    CAS  Google Scholar 

  28. [28]

    Yu J, Li X Y, Miao J, et al. Atomic mechanism in layer-by-layer growth via surface reconstruction. Nano Letters, 2019, 19(6): 4205–4210

    CAS  Google Scholar 

  29. [29]

    Chen X, Wang H, Wan H, et al. Core/shell Cu/FePtCu nanoparticles with face-centered tetragonal texture: An active and stable low-Pt catalyst for enhanced oxygen reduction. Nano Energy, 2018, 54: 280–287

    CAS  Google Scholar 

  30. [30]

    Pieta I S, Rathi A, Pieta P, et al. Electrocatalytic methanol oxidation over Cu, Ni and bimetallic Cu-Ni nanoparticles supported on graphitic carbon nitride. Applied Catalysis B: Environmental, 2019, 244: 272–283

    CAS  Google Scholar 

  31. [31]

    Rezaee S, Shahrokhian S. Facile synthesis of petal-like NiCo/NiO-CoO/nanoporous carbon composite based on mixed-metallic MOFs and their application for electrocatalytic oxidation of methanol. Applied Catalysis B: Environmental, 2019, 244: 802–813

    CAS  Google Scholar 

  32. [32]

    Hu Y, Mei T, Li J, et al. Porous SnO2 hexagonal prism-attached Pd/rGO with enhanced electrocatalytic activity for methanol oxidation. RSC Advances, 2017, 7(47): 29909–29915

    CAS  Google Scholar 

  33. [33]

    Guo Y, Tang J, Qian H, et al. One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 hetero-structures as efficient bifunctional catalysts. Chemistry of Materials, 2017, 29(13): 5566–5573

    CAS  Google Scholar 

  34. [34]

    Liang Z, Qu C, Xia D, et al. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angewandte Chemie International Edition in English, 2018, 57(31): 9604–9633

    CAS  Google Scholar 

  35. [35]

    Weng B, Wang X, Grice C R, et al. A new metal-organic open framework enabling facile synthesis of carbon encapsulated transition metal phosphide/sulfide nanoparticle electrocatalysts. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(12): 7168–7178

    CAS  Google Scholar 

  36. [36]

    Yang X, Wang S, Yu D Y W, et al. Direct conversion of metal-organic frameworks into selenium/selenide/carbon composites with high sodium storage capacity. Nano Energy, 2019, 58: 392–398

    CAS  Google Scholar 

  37. [37]

    Mehek R, Iqbal N, Noor T, et al. Novel Co-MOF/graphene oxide electrocatalyst for methanol oxidation. Electrochimica Acta, 2017, 255:195–204

    CAS  Google Scholar 

  38. [38]

    Bai Z, Li S, Fu J, et al. Metal-organic framework-derived nickel cobalt oxysulfide nanocages as trifunctional electrocatalysts for high efficiency power to hydrogen. Nano Energy, 2019, 58: 680–686

    CAS  Google Scholar 

  39. [39]

    Xie Y, Zhang C, He X, et al. Copper-promoted nitrogen-doped carbon derived from zeolitic imidazole frameworks for oxygen reduction reaction. Applied Surface Science, 2019, 464: 344–350

    CAS  Google Scholar 

  40. [40]

    Liu T, Li P, Yao N, et al. Self-sacrificial template-directed vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting. Advanced Materials, 2019, 31(21): 1806672

    Google Scholar 

  41. [41]

    Yu F, Ming X, Xu Y, et al. Quasimetallic molybdenum carbide-based flexible polyvinyl alcohol hydrogels for enhancing solar water evaporation. Advanced Materials Interfaces, 2019, 6(24): 1901168

    CAS  Google Scholar 

  42. [42]

    Lin L D, Zhao D, Li X X, et al. Recent advances in zeolite-like cluster organic frameworks. Chemistry, 2019, 25(2): 442–453

    CAS  Google Scholar 

  43. [43]

    Shinde S S, Sami A, Kim D H, et al. Nanostructured SnS-N-doped graphene as an advanced electrocatalyst for the hydrogen evolution reaction. Chemical Communications, 2015, 51(86): 15716–15719

    CAS  Google Scholar 

  44. [44]

    Zhang Y C, Li J, Zhang M, et al. Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Environmental Science & Technology, 2011, 45(21): 9324–9331

    CAS  Google Scholar 

  45. [45]

    Zhang A, He R, Li H, et al. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction. Angewandte Chemie International Edition, 2018, 57(34): 10954–10958

    CAS  Google Scholar 

  46. [46]

    Guo Z, Yu F, Chen Z, et al. Stabilized Mo2S3 by FeS2 based porous solar evaporation systems for highly efficient clean freshwater collection. Solar Energy Materials and Solar Cells, 2020, 211: 110531

    CAS  Google Scholar 

  47. [47]

    Amin R S, El-Khatib K M, Siracusano S, et al. Metal oxide promoters for methanol electro-oxidation. International Journal of Hydrogen Energy, 2014, 39(18): 9782–9790

    CAS  Google Scholar 

  48. [48]

    Hu G, Nitze F, Barzegar H R, et al. Palladium nanocrystals supported on helical carbon nanofibers for highly efficient electro-oxidation of formic acid, methanol and ethanol in alkaline electrolytes. Journal of Power Sources, 2012, 209: 236–242

    CAS  Google Scholar 

  49. [49]

    Ma Y, Chen X, Wu H, et al. Highly efficient adsorption/photodegradation of organic pollutants using Sn1 0.25xCuxS2 flower-like as a novel photocatalyst. Journal of Alloys and Compounds, 2017, 702: 489–498

    CAS  Google Scholar 

  50. [50]

    Xiao X, He C T, Zhao S, et al. A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy & Environmental Science, 2017, 10(4): 893–899

    CAS  Google Scholar 

  51. [51]

    Liu Y K, Hu B, Wu S D, et al. Hierarchical nanocomposite electrocatalyst of bimetallic zeolitic imidazolate framework and MoS2 sheets for non-Pt methanol oxidation and water splitting. Applied Catalysis B: Environmental, 2019, 258: 117970

    CAS  Google Scholar 

  52. [52]

    Wu D, Zhang W, Cheng D. Facile synthesis of Cu/NiCu electrocatalysts integrating alloy, core shell, and one-dimensional structures for efficient methanol oxidation reaction. ACS Applied Materials & Interfaces, 2017, 9(23): 19843–19851

    CAS  Google Scholar 

  53. [53]

    Umeshbabu E, Rao G R. NiCo2O4 hexagonal nanoplates anchored on reduced graphene oxide sheets with enhanced electrocatalytic activity and stability for methanol and water oxidation. Electro-chimica Acta, 2016, 213: 717–729

    CAS  Google Scholar 

  54. [54]

    Cui J, Liu J M, Wang C B, et al. Efficient electrocatalytic water oxidation by using the hierarchical 1D/2D structural nanohybrid of CoCu-based zeolitic imidazolate framework nanosheets and graphdiyne nanowires. Electrochimica Acta, 2020, 334: 135577

    CAS  Google Scholar 

  55. [55]

    Gu L, Qian L, Lei Y, et al. Microwave-assisted synthesis of nanosphere-like NiCo2O4 consisting of porous nanosheets and its application in electro-catalytic oxidation of methanol. Journal of Power Sources, 2014, 261: 317–323

    CAS  Google Scholar 

  56. [56]

    Candelaria S L, Bedford N M, Woehl T J, et al. Multi-component Fe-Ni hydroxide nanocatalyst for oxygen evolution and methanol oxidation reactions under alkaline conditions. ACS Catalysis, 2017, 7(1): 365–379

    CAS  Google Scholar 

  57. [57]

    Jothi P R, Kannan S, Velayutham G. Enhanced methanol electro-oxidation over in-situ carbon and graphene supported one dimensional NiMoO4 nanorods. Journal of Power Sources, 2015, 277: 350–359

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Grant No. 2016YFA0200200), the National Natural Science Foundation of China (Grant Nos. 51272071, 51203045 and 21401049), and the Wuhan Science and Technology Bureau of China (Grant No. 2018010401011280).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xianbao Wang.

Additional information

Disclosure of potential conflicts of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yu, F., Guo, Z. et al. Three-dimensional flower-like SnS2-supported bimetallic zeolite imidazole compound with enhanced electrocatalytic activity for methanol oxidation. Front. Mater. Sci. 15, 166–175 (2021). https://doi.org/10.1007/s11706-021-0542-z

Download citation