Nickel-decorated TiO2 nanotube arrays as a self-supporting cathode for lithium-sulfur batteries


Lithium-sulfur batteries are considered to be one of the strong competitors to replace lithium-ion batteries due to their large energy density. However, the dissolution of discharge intermediate products to the electrolyte, the volume change and poor electric conductivity of sulfur greatly limit their further commercialization. Herein, we proposed a self-supporting cathode of nickel-decorated TiO2 nanotube arrays (TiO2 NTs@Ni) prepared by an anodization and electrodeposition method. The TiO2 NTs with large specific surface area provide abundant reaction space and fast transmission channels for ions and electrons. Moreover, the introduction of nickel can enhance the electric conductivity and the polysulfide adsorption ability of the cathode. As a result, the TiO2 NTs@Ni-S electrode exhibits significant improvement in cycling and rate performance over TiO2 NTs, and the discharge capacity of the cathode maintains 719 mA·h·g−1 after 100 cycles at 0.1 C.

This is a preview of subscription content, log in to check access.


  1. [1]

    Wang L L, Ye Y S, Chen N, et al. Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries. Advanced Functional Materials, 2018, 28(38): 1800919

    Google Scholar 

  2. [2]

    Peng H J, Hou T Z, Zhang Q, et al. Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: mechanistic insight into capacity degradation. Advanced Materials Interfaces, 2014, 1(7): 1400227

    Google Scholar 

  3. [3]

    Kou W, Li X, Liu Y, et al. Triple-layered carbon-SiO2 composite membrane for high energy density and long cycling Li-S batteries. ACS Nano, 2019, 13(5): 5900–5909

    CAS  Google Scholar 

  4. [4]

    Chen W, Qian T, Xiong J, et al. A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries. Advanced Materials, 2017, 29(12): 1605160

    Google Scholar 

  5. [5]

    Guo Z, Nie H, Yang Z, et al. 3D CNTs/graphene-S-Al3Ni2 cathodes for high-sulfur-loading and long-life lithium-sulfur batteries. Advanced Science, 2018, 5(7): 1800026

    Google Scholar 

  6. [6]

    Liu D, Zhang C, Zhou G, et al. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Advanced Science, 2018, 5(1): 1700270

    Google Scholar 

  7. [7]

    Busche M R, Adelhelm P, Sommer H, et al. Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates. Journal of Power Sources, 2014, 259: 289–299

    CAS  Google Scholar 

  8. [8]

    Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage. Advanced Materials, 2011, 23(42): 4828–4850

    CAS  Google Scholar 

  9. [9]

    Wu F, Lee J T, Zhao E, et al. Graphene-Li2S-carbon nanocomposite for lithium-sulfur batteries. ACS Nano, 2016, 10(1): 1333–1340

    CAS  Google Scholar 

  10. [10]

    Chen G, Zhong W, Li Y, et al. Rational design of TiO-TiO2 heterostructure/polypyrrole as a multifunctional sulfur host for advanced lithium-sulfur batteries. ACS Applied Materials & Interfaces, 2019, 11(5): 5055–5063

    CAS  Google Scholar 

  11. [11]

    Jiao L, Zhang C, Geng C N, et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Advanced Energy Materials, 2019, 9(19): 1900219

    Google Scholar 

  12. [12]

    Wang Y K, Zhang R F, Chen J, et al. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Advanced Energy Materials, 2019, 9(24): 1900953

    Google Scholar 

  13. [13]

    Zhang L P, Wang Y F, Gou S Q, et al. All inorganic frameworks of tin dioxide shell as cathode material for lithium sulfur batteries with improved cycle performance. The Journal of Physical Chemistry C, 2015, 119(52): 28721–28727

    CAS  Google Scholar 

  14. [14]

    Liang X, Nazar L F. In situ reactive assembly of scalable core-shell sulfur-MnO2 composite cathodes. ACS Nano, 2016, 10(4): 4192–4198

    CAS  Google Scholar 

  15. [15]

    Chung S H, Manthiram A. A Li2S-TiS2-electrolyte composite for stable Li2S-based lithium-sulfur batteries. Advanced Energy Materials, 2019, 9(30): 1901397

    Google Scholar 

  16. [16]

    Chen M, Xu W, Jamil S, et al. Multifunctional heterostructures for polysulfide suppression in high-performance lithium-sulfur cathode. Small, 2018, 14(49): e1803134

    Google Scholar 

  17. [17]

    Cui Z Q, Yao J, Mei T, et al. Strong lithium polysulfides chemical trapping of TiC-TiO2/S composite for long-cycle lithium-sulfur batteries. Electrochimica Acta, 2019, 298: 43–51

    CAS  Google Scholar 

  18. [18]

    Liang X, Garsuch A, Nazar L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angewandte Chemie International Edition, 2015, 54(13): 3907–3911

    CAS  Google Scholar 

  19. [19]

    Liao Y, Xiang J, Yuan L, et al. Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium-sulfur batteries. ACS Applied Materials & Interfaces, 2018, 10(44): 37955–37962

    CAS  Google Scholar 

  20. [20]

    Deng D R, Xue F, Jia Y J, et al. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries. ACS Nano, 2017, 11(6): 6031–6039

    CAS  Google Scholar 

  21. [21]

    Rasoulnezhad H, Hosseinzadeh G, Hosseinzadeh R, et al. Preparation of transparent nanostructured N-doped TiO2 thin films by combination of sonochemical and CVD methods with visible light photocatalytic activity. Journal of Advanced Ceramics, 2018, 7(3): 185–196

    CAS  Google Scholar 

  22. [22]

    Zhao C L, Wu Y X, Liang H L, et al. N-doped graphene and TiO2 supported manganese and cerium oxides on low-temperature selective catalytic reduction of NOx with NH3. Journal of Advanced Ceramics, 2018, 7(3): 197–206

    CAS  Google Scholar 

  23. [23]

    Shao H Y, Wang W K, Zhang H, et al. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery. Journal of Power Sources, 2018, 378: 537–545

    CAS  Google Scholar 

  24. [24]

    Zha C, Wu D, Zhang T, et al. A facile and effective sulfur loading method: Direct drop of liquid Li2S8 on carbon coated TiO2 nanowire arrays as cathode towards commercializing lithium-sulfur battery. Energy Storage Materials, 2019, 17: 118–125

    Google Scholar 

  25. [25]

    Seh Z W, Li W, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nature Communications, 2013, 4(1): 1331

    Google Scholar 

  26. [26]

    Pang Q, Liang X, Kwok C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 2016, 1(9): 16132

    CAS  Google Scholar 

  27. [27]

    Zhao Y, Zhu W, Chen G Z, et al. Polypyrrole/TiO2 nanotube arrays with coaxial heterogeneous structure as sulfur hosts for lithium sulfur batteries. Journal of Power Sources, 2016, 327: 447–456

    CAS  Google Scholar 

  28. [28]

    Su J, Zhu L, Geng P, et al. Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light. Journal of Hazardous Materials, 2016, 316: 159–168

    CAS  Google Scholar 

  29. [29]

    Zhang Y H, Yang Y N, Xiao P, et al. Preparation of Ni nanoparticle-TiO2 nanotube composite by pulse electrodeposition. Materials Letters, 2009, 63(28): 2429–2431

    CAS  Google Scholar 

  30. [30]

    Liang Z, Zheng G, Li W, et al. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano, 2014, 8(5): 5249–5256

    CAS  Google Scholar 

  31. [31]

    Perdew J P, Ruzsinszky A, Csonka G I, et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 2008, 100(13): 136406

    Google Scholar 

  32. [32]

    Lim J H, Choi J. Titanium oxide nanowires originating from anodically grown nanotubes: the bamboo-splitting model. Small, 2007, 3(9): 1504–1507

    CAS  Google Scholar 

  33. [33]

    Wang H Z, Kou X L, Zhang L, et al. Size-controlled synthesis, microstructure and magnetic properties of Ni nanoparticles. Materials Research Bulletin, 2008, 43(12): 3529–3536

    CAS  Google Scholar 

  34. [34]

    Ni J, Fu S, Wu C, et al. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Advanced Materials, 2016, 28(11): 2259–2265

    CAS  Google Scholar 

  35. [35]

    Li C C, Liu X B, Zhu L, et al. Conductive and polar titanium boride as a sulfur host for advanced lithium-sulfur batteries. Chemistry of Materials, 2018, 30(20): 6969–6977

    CAS  Google Scholar 

  36. [36]

    Li Y M, Han X, Yi T F, et al. Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. Journal of Energy Chemistry, 2019, 31: 54–78

    Google Scholar 

  37. [37]

    Wang L P, Zhang J Y, Gao Y, et al. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution. Scripta Materialia, 2006, 55(7): 657–660

    Google Scholar 

  38. [38]

    Liu Y T, Han D D, Wang L, et al. NiCo2O4 nanofibers as carbonfree sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium-sulfur battery. Advanced Energy Materials, 2019, 9(11): 1803477

    Google Scholar 

  39. [39]

    Shang X N, Qin T F, Guo P Q, et al. A novel strategy for the selection of polysulfide adsorbents toward high-performance lithium-sulfur batteries. Advanced Materials Interfaces, 2019, 6: 1900393

    Google Scholar 

  40. [40]

    Xu R, Lu J, Amine K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Advanced Energy Materials, 2015, 5(16): 1500408

    Google Scholar 

  41. [41]

    Liao J Y, Higgins D, Lui G, et al. Multifunctional TiO2-C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Letters, 2013, 13(11): 5467–5473

    CAS  Google Scholar 

Download references


The authors acknowledge the financial support from the Natural Science Foundation of Beijing (No. L182062), the Organization Department of Beijing Talents Project (2018000021223ZK21), the Beijing Nova Program (Z171100001117077), the Yue Qi Young Scholar Project of China University of Mining & Technology (Beijing) (No. 2017QN17), and the Fundamental Research Funds for the Central Universities (No. 2014QJ02).

Author information



Corresponding authors

Correspondence to Yufen Wang or Ruiping Liu.

Additional information

Disclosure of potential conflicts of interests

The authors declare no potential conflicts of interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Tang, W., Ma, J. et al. Nickel-decorated TiO2 nanotube arrays as a self-supporting cathode for lithium-sulfur batteries. Front. Mater. Sci. (2020).

Download citation


  • lithium-sulfur battery
  • TiO2
  • self-supporting
  • polysulfide intermediate