Skip to main content
Log in

Catalytically enhanced thin and uniform TaS2 nanosheets for hydrogen evolution reaction

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Though the transition-metal dichalcogenides (TMDs) were proven to have a better performance on the hydrogen evolution reaction (HER), the bulk production of active TMD materials remains a challenging work. This report overcomes those barriers by showing a simple procedure to synthesize TaS2 nanosheets through modifying the arc discharge process. The usage of chloride as the transporting agent reduces the growth period of the formed TaS2 with active edge sites. TaS2 is found to have a uniform thickness (4 nm) with high crystallinity and adopt a 2H polytype (double-layered hexagonal) structure. The as-synthesized TaS2 has superior activity for HER with the potential of 280 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

    Article  Google Scholar 

  2. Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 2010, 22(35): 3906–3924

    Article  Google Scholar 

  3. Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581

    Article  Google Scholar 

  4. Meric I, Han M Y, Young A F, et al. Current saturation in zerobandgap, top-gated graphene field-effect transistors. Nature Nanotechnology, 2008, 3(11): 654–659

    Article  Google Scholar 

  5. Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469

    Article  Google Scholar 

  6. Zeng Z Y, Tan C L, Huang X, et al. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy & Environmental Science, 2014, 7(2): 797–803

    Article  Google Scholar 

  7. Wu J J, Liu MJ, Chatterjee K, et al. Exfoliated 2D transition metal disulfides for enhanced electrocatalysis of oxygen evolution reaction in acidic medium. Advanced Materials Interfaces, 2016, 3(9): 1500669

    Article  Google Scholar 

  8. Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150

    Article  Google Scholar 

  9. Raj S I, Xu X W, Yang W, et al. Highly active and reflective MoS2 counter electrode for enhancement of photovoltaic efficiency of dye sensitized solar cells. Electrochimica Acta, 2016, 212: 614–620

    Article  Google Scholar 

  10. Liu C, Kong D, Hsu P C, et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nature Nanotechnology, 2016, 11(12): 1098–1104

    Article  Google Scholar 

  11. Tan C, Zeng Z, Huang X, et al. Liquid-phase epitaxial growth of two-dimensional semiconductor hetero-nanostructures. Angewandte Chemie International Edition in English, 2015, 54(6): 1841–1845

    Article  Google Scholar 

  12. Zhang X, Lai Z, Liu Z, et al. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angewandte Chemie International Edition in English, 2015, 54(18): 5425–5428

    Article  Google Scholar 

  13. Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012, 24(17): 2320–2325

    Article  Google Scholar 

  14. Muratore C, Hu J J, Wang B, et al. Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Applied Physics Letters, 2014, 104(26): 261604

    Article  Google Scholar 

  15. Etzkorn J, Therese H A, Rocker F, et al. Metal-organic chemical vapor deposition synthesis of hollow inorganic-fullerene-type MoS2 and MoSe2 nanoparticles. Advanced Materials, 2005, 17(19): 2372–2375

    Article  Google Scholar 

  16. Nath M, Rao C N R. New metal disulfide nanotubes. Journal of the American Chemical Society, 2001, 123(20): 4841–4842

    Article  Google Scholar 

  17. Dunnill C W, MacLaren I, Gregory D H. Superconducting tantalum disulfide nanotapes; growth, structure and stoichiometry. Nanoscale, 2010, 2(1): 90–97

    Article  Google Scholar 

  18. Li P, Stender C L, Ringe E, et al. Synthesis of TaS2 nanotubes from Ta2O5 nanotube templates. Small, 2010, 6(10): 1096–1099

    Article  Google Scholar 

  19. Yu Y, Yang F, Lu X F, et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nature Nanotechnology, 2015, 10(3): 270–276

    Article  Google Scholar 

  20. Schuffenhauer C, Parkinson B A, Jin-Phillipp N Y, et al. Synthesis of fullerene-like tantalum disulfide nanoparticles by a gas-phase reaction and laser ablation. Small, 2005, 1(11): 1100–1109

    Article  Google Scholar 

  21. Park K Y, Kim H J, Suh Y J. Preparation of tantalum nanopowders through hydrogen reduction of TaCl5 vapor. Powder Technology, 2007, 172(3): 144–148

    Article  Google Scholar 

  22. Sun G, Liu J, Zhang X, et al. Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. Angewandte Chemie International Edition, 2014, 53(46): 12576–12580

    Google Scholar 

  23. Wu X C, Tao Y R, Gao Q X. Fabrication of TaS2 nanobelt arrays and their enhanced field-emission. Chemical Communications, 2009, 40(40): 6008–6010

    Article  Google Scholar 

  24. Wu X C, Tao Y R, Gao Q X, et al. Superconducting TaS2–xIy hierarchical nanostructures. Chemical Communications, 2009, 28(28): 4290–4292

    Article  Google Scholar 

  25. Ubaldini A, Jacimovic J, Ubrig N, et al. Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides. Crystal Growth & Design, 2013, 13(10): 4453–4459

    Article  Google Scholar 

  26. Li P, Stender C L, Ringe E, et al. Synthesis of TaS2 nanotubes from Ta2O5 nanotube templates. Small, 2010, 6(10): 1096–1099

    Article  Google Scholar 

  27. Wu X, Tao Y, Hu Y, et al. Tantalum disulfide nanobelts: preparation, superconductivity and field emission. Nanotechnology, 2005, 17(1): 201–205

    Article  Google Scholar 

  28. Wu X C, Tao Y R, Gao Q X, et al. Superconducting TaS2–xIy hierarchical nanostructures. Chemical Communications, 2009, 28(28): 4290–4292

    Article  Google Scholar 

  29. Wu X C, Tao Y R, Gao Q X. Fabrication of TaS2 nanobelt arrays and their enhanced field-emission. Chemical Communications, 2009, 40(40): 6008–6010

    Article  Google Scholar 

  30. Li P, Stender C L, Ringe E, et al. Synthesis of TaS2 nanotubes from Ta2O5 nanotube templates. Small, 2010, 6(10): 1096–1099

    Article  Google Scholar 

  31. Schuffenhauer C, Parkinson B A, Jin-Phillipp N Y, et al. Synthesis of fullerene-like tantalum disulfide nanoparticles by a gas-phase reaction and laser ablation. Small, 2005, 1(11): 1100–1109

    Article  Google Scholar 

  32. Dunnill C W, MacLaren I, Gregory D H. Superconducting tantalum disulfide nanotapes: growth, structure and stoichiometry. Nanoscale, 2010, 2(1): 90–97

    Article  Google Scholar 

  33. Yu Y, Yang F, Lu X F, et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nature Nanotechnology, 2015, 10(3): 270–276

    Article  Google Scholar 

  34. Li H, Tan Y, Liu P, et al. Atomic-sized pores enhanced electrocatalysis of TaS2 nanosheets for hydrogen evolution. Advanced Materials, 2016, 28(40): 8945–8949

    Article  Google Scholar 

  35. Nguyen T P, Choi S, Jeon J M, et al. Transition metal disulfide nanosheets synthesized by facile sonication method for the hydrogen evolution reaction. The Journal of Physical Chemistry C, 2016, 120(7): 3929–3935

    Article  Google Scholar 

  36. Feng Y, Gong S, Du E, et al. 3R TaS2 surpasses the corresponding 1T and 2H phases for the hydrogen evolution reaction. The Journal of Physical Chemistry C, 2018, 122(4): 2382–2390

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21576289 and 21322609), the Science Foundation Research Funds Provided to New Recruitments of China University of Petroleum, Beijing (2462014QZDX01) and the Thousand Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Li.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, I., Duan, Y., Kigen, D. et al. Catalytically enhanced thin and uniform TaS2 nanosheets for hydrogen evolution reaction. Front. Mater. Sci. 12, 239–246 (2018). https://doi.org/10.1007/s11706-018-0425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-018-0425-0

Keywords

Navigation