Skip to main content
Log in

Convenient synthesis of twin-Christmas tree-like PbWO4 microcrystals and their photocatalytic properties

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Novel twin-Christmas tree-like PbWO4 microcrystals have been prepared via a convenient aqueous solution route at room temperature under the assistance of β-cyclodextrin (β-CD). The product was characterized by XRD, EDX, SEM, TEM, UV-vis and PL and BET techniques. It was found that β-CD plays an important role in the forming of twin-Christmas tree-like PbWO4 microcrystals. A five-step growth mechanism was proposed to explain the formation of such twin-Christmas tree-like structures. The photocatalytic performance of PbWO4 microcrystals was evaluated by measuring the decomposition rate of methylene blue (MB) and malachite green (MG) solution under the UV irradiation, and the photocatalytic results indicated that as-prepared PbWO4 microcrystals exhibit good and versatile photocatalytic activity as well as excellent recyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tian P, Zhang Y, Senevirathne K, et al. Diverse structural and magnetic properties of differently prepared MnAs nanoparticles. ACS Nano, 2011, 5(4): 2970–2978

    Article  Google Scholar 

  2. Mak A C, Yu C L, Yu J C, et al. A lamellar ceria structure with encapsulated platinum nanoparticles. Nano Research, 2008, 1(6): 474–482

    Article  Google Scholar 

  3. Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601): 2176–2179

    Article  Google Scholar 

  4. Tang H, Chang S F, Jiang L Y, et al. Novel spindle-shaped nanoporous TiO2 coupled graphitic g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. Ceramics International, 2016, 42(16): 18443–18452

    Article  Google Scholar 

  5. Yang X, Chen Z, Xu J, et al. Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation. ACS Applied Materials & Interfaces, 2015, 7(28): 15285–15293

    Article  Google Scholar 

  6. Barth J V, Costantini G, Kern K. Engineering atomic and molecular nanostructures at surfaces. Nature, 2005, 437(7059): 671–679

    Article  Google Scholar 

  7. Cerný P, Jelinkova H, Zverev P G, et al. Solid state lasers with Raman frequency conversion. Progress in Quantum Electronics, 2004, 28(2): 113–143

    Article  Google Scholar 

  8. Angloher G, Bruckmayer M, Bucci C, et al. Limits on WIMP dark matter using sapphire cryogenic detectors. Astroparticle Physics, 2002, 18(1): 43–55

    Article  Google Scholar 

  9. Sundaram R, Nagaraja K S. Electrical and humidity sensing properties of lead(II) tungstate–tungsten(VI) oxide and zinc(II) tungstate–tungsten(VI) oxide composites. Materials Research Bulletin, 2004, 39(4–5): 581–590

    Article  Google Scholar 

  10. Faure N, Borel C, Couchaud M, et al. Optical properties and laser performance of neodymium doped scheelites CaWO4 and NaGd (WO4)2. Applied Physics B: Lasers and Optics, 1996, 63(6): 593–598

    Google Scholar 

  11. Arora S K, Chudasama B. Flux growth and optoelectronic study of PbWO4 single crystals. Crystal Growth & Design, 2007, 7(2): 296–299

    Article  Google Scholar 

  12. Neiman Y, Guseva A F, Sharafutdinov A R. Origin of potential difference selfgenerated by reaction and transport processes. Solid State Ionics, 1997, 101–103: 367–372

    Article  Google Scholar 

  13. Zeng H C. Rectangular vacancy island formation and selfdepletion in Czochralski-grown PbMoO4 single crystal during heat treatment. Journal of Crystal Growth, 1996, 160(1–2): 119–128

    Article  Google Scholar 

  14. Yu C L, Cao F F, Li X, et al. Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation. Chemical Engineering Journal, 2013, 219: 86–95

    Article  Google Scholar 

  15. Tang H, Li C S, Song H, et al. Controllable synthesis, characterization and growth mechanism of three-dimensional hierarchical PbWO4 microstructures. CrystEngComm, 2011, 13(16): 5119–5124

    Article  Google Scholar 

  16. Wang G Z, Hao C C. Fast synthesis and morphology control of lead tungstate microcrystals via a microwave-assisted method. Materials Research Bulletin, 2009, 44(2): 418–421

    Article  Google Scholar 

  17. Wang Y G, Yang L L, Wang Y J, et al. Controlled synthesis of PbWO4 dendrites by a simple sonochemical method. Journal of Alloys and Compounds, 2013, 554: 86–88

    Article  Google Scholar 

  18. Fu H B, Pan C S, Zhang LW, et al. Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts. Materials Research Bulletin, 2007, 42(4): 696–706

    Article  Google Scholar 

  19. Zhang Q, Yao W T, Chen X Y, et al. Nearly monodisperse tungstate MWO4 microspheres (M = Pb, Ca): surfactant-assisted solution synthesis and optical properties. Crystal Growth & Design, 2007, 7(8): 1423–1431

    Article  Google Scholar 

  20. Crane M, Frost R L, Williams P A, et al. Raman spectroscopy of the molybdate minerals chillagite (tungsteinian wulfenite-I4), stolzite, scheelite, wolframite and wulfenite. Journal of Raman Spectroscopy, 2002, 33(1): 62–66

    Article  Google Scholar 

  21. Frost R L, Duong L, Weier M. Raman microscopy of selected tungstate minerals. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(8–9): 1853–1859

    Article  Google Scholar 

  22. Bastians S, Crump G, Griffith W P, et al. Raspite and studtite: Raman spectra of two unique minerals. Journal of Raman Spectroscopy, 2004, 35(8–9): 726–731

    Article  Google Scholar 

  23. Jin R C, Chen G, Pei J, et al. Facile solvothermal synthesis and growth mechanism of flower-like PbTe dendrites assisted by cyclodextrin. CrystEngComm, 2012, 14(6): 2327–2332

    Article  Google Scholar 

  24. Li Q, Yam VWW. High-yield synthesis of selenium nanowires in water at room temperature. Chemical Communications, 2006, 9(9): 1006–1008

    Article  Google Scholar 

  25. Bonini M, Roßsi S, Karlsson G, et al. Self-assembly of ß-cyclodextrin in water. Part 1: Cryo-TEM and dynamic and static light scattering. Langmuir, 2006, 22(4): 1478–1484

    Google Scholar 

  26. Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 1998, 281(5379): 969–971

    Article  Google Scholar 

  27. Banfield J F, Welch S A, Zhang H, et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 2000, 289(5480): 751–754

    Article  Google Scholar 

  28. Li Q, Shao M W, Yu G H, et al. A solvent-reduction approach to tetrapod-like copper(I) chloride crystallites. Journal of Materials Chemistry, 2003, 13(2): 424–427

    Article  Google Scholar 

  29. Fu H B, Pan V S, Zhang LW, et al. Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts. Materials Research Bulletin, 2007, 42(4): 696–706

    Article  Google Scholar 

  30. Yu J G, Yu J C, Ho W K, et al. Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. New Journal of Chemistry, 2002, 26(5): 607–613

    Article  Google Scholar 

  31. Thongtem T, Phuruangrat A, Thongtem S. Preparation and characterization of nanocrystalline SrWO4 using cyclic microwave radiation. Current Applied Physics, 2008, 8(2): 189–197

    Article  Google Scholar 

  32. Zhang H, Fan X, Quan X, et al. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light. Environmental Science & Technology, 2011, 45(13): 5731–5736

    Article  Google Scholar 

  33. Feng X, Guo H, Patel K, et al. High performance, recoverable Fe3O4–ZnO nanoparticles for enhanced photocatalytic degradation of phenol. Chemical Engineering Journal, 2014, 244: 327–334

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chongqing Science & Technology Commission, China (Grant Nos. CSTC2015JCYJBX0126 and CSTC2016SHMSZX20001), the Key Laboratory of Analysis & Detection for Food Safety (Fuzhou University), Ministry of Education (Project No. FS-1402), the Foundation of Chongqing Municipal Education Commission (KJ1711292), and the Scientific Research Project of Chongqing University of Arts and Sciences (Project No. Y2015XC28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Peng, LL., Tang, Y. et al. Convenient synthesis of twin-Christmas tree-like PbWO4 microcrystals and their photocatalytic properties. Front. Mater. Sci. 11, 139–146 (2017). https://doi.org/10.1007/s11706-017-0381-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-017-0381-0

Keywords

Navigation