Frontiers of Materials Science

, Volume 11, Issue 2, pp 182–189 | Cite as

Electronic structure and bonding interactions in Ba1−xSr x Zr0.1Ti0.9O3 ceramics

  • Jegannathan Mangaiyarkkarasi
  • Subramanian Sasikumar
  • Olai Vasu Saravanan
  • Ramachandran Saravanan
Research Article


An investigation on the precise electronic structure and bonding interactions has been carried out on Ba1−xSr x Zr0.1Ti0.9O3 (short for BSZT, x = 0, 0.05, 0.07 and 0.14) ceramic systems prepared via high-temperature solid state reaction technique. The influence of Sr doping on the BSZT structure has been examined by characterizing the prepared samples using PXRD, UV-visible spectrophotometry, SEM and EDS. Powder profile refinement of X-ray data confirms that all the synthesized samples have been crystallized in cubic perovskite structure with single phase. Charge density distribution of the BSZT systems has been completely analyzed by the maximum entropy method (MEM). Co-substitution of Sr at the Ba site and Zr at the Ti site into the BaTiO3 structure presents the ionic nature between Ba and O ions and the covalent nature between Ti and O ions, revealed from MEM calculations. Optical band gap values have been evaluated from UV-visible absorption spectra. Particles with irregular shapes and well defined grain boundaries are clearly visualized from SEM images. The phase purity of the prepared samples is further confirmed by EDS qualitative spectral analysis.


barium titanate X-ray diffraction Rietveld refinement maximum entropy method bonding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the authorities of “The Madura College, Madurai-11” for providing lab facilities, continuous support and encouragement to carry out the research work successfully. One of the authors (J.M.) is thankful to the Management of NMSSVN College, Nagamalai, Madurai-19 and UGC for the Faculty Development Programme of XII plan, the period in which this effective work was carried out.


  1. [1]
    Rani R, Singh S, Juneja J K, et al. Dielectric properties of Zr substituted BST ceramics. Ceramics International, 2011, 37(8): 3755–3758CrossRefGoogle Scholar
  2. [2]
    Buscaglia M T, Buscaglia V, Viviani M, et al. Influence of foreign ions on the crystal structure of BaTiO3. Journal of the European Ceramic Society, 2000, 20(12): 1997–2007CrossRefGoogle Scholar
  3. [3]
    Nanakorn N, Jalupoom P, Vaneesorn N, et al. Dielectric and ferroelectric properties of Ba(ZrxTi1–x)O3 ceramics. Ceramics International, 2008, 34(4): 779–782CrossRefGoogle Scholar
  4. [4]
    Wu T B, Wu C M, Chen M L. High insulative barium zirconate–titanate thin films prepared by rf magnetron sputtering for dynamic random access memory applications. Applied Physics Letters, 1996, 69(18): 2659–2661CrossRefGoogle Scholar
  5. [5]
    Dixit A, Majumder S B, Katiyar R S, et al. Relaxor behavior in sol–gel derived BaZr0.40Ti0.60O3. Applied Physics Letters, 2003, 82(16): 2679–2681CrossRefGoogle Scholar
  6. [6]
    Swartz S L. Topics in electronic ceramics. IEEE Transactions on Electrical Insulation, 1990, 25(5): 935–987CrossRefGoogle Scholar
  7. [7]
    Cavalcante L S, Sczancoski J C, De Vicente F S, et al. Microstructure, dielectric properties and optical band gap control on the photoluminescence behavior of Ba[Zr0.25Ti0.75]O3 thin films. Journal of Sol-Gel Science and Technology, 2009, 49(1): 35–46CrossRefGoogle Scholar
  8. [8]
    Brankovic G, Brankovic Z, Goes M S, et al. Barium strontium titanate powders prepared by spray pyrolysis. Materials Science and Engineering B, 2005, 122(2): 140–144CrossRefGoogle Scholar
  9. [9]
    Caruntu G, Rarig R, Dumitru I, et al. Annealing effects on the crystallite size and dielectric properties of ultra fine Ba1–xSrxTiO3 (0<x<1) powders synthesized through an oxalate-complex precursor. Journal of Materials Chemistry, 2006, 16(8): 752–758CrossRefGoogle Scholar
  10. [10]
    Nedelcu L, Ioachim A, Toacsan M, et al. Synthesis and dielectric characterization of Ba0.6Sr0.4TiO3 ferroelectric ceramics. Thin Solid Films, 2011, 519(17): 5811–5815CrossRefGoogle Scholar
  11. [11]
    Chan N Y, Choy S H, Wang D Y, et al. High dielectric tunability of ferroelectric (Ba1–x,Srx)(Zr0.1,Ti0.9)O3 ceramics. Journal of Materials Science Materials in Electronics, 2014, 25(6): 2589–2594CrossRefGoogle Scholar
  12. [12]
    Kumar M, Garg A, Kumar R, et al. Structural, dielectric and ferroelectric study of Ba0.9Sr0.1ZrxTi1–xO3 ceramics prepared by the sol–gel method. Physica B: Condensed Matter, 2008, 403(10–11): 1819–1823CrossRefGoogle Scholar
  13. [13]
    Bhaskar Reddy S, Prasad Rao K, Ramachandra Rao M S. Structural and dielectric characterization of Sr substituted Ba(Zr, Ti)O3 based functional materials. Applied Physics A: Materials Science & Processing, 2007, 89(4): 1011–1015CrossRefGoogle Scholar
  14. [14]
    Bhaskar Reddy S, Prasad Rao K, Ramachandra Rao MS. Effect of La substitution on the structural and dielectric properties of BaZr0.1Ti0.9O3 ceramics. Journal of Alloys and Compounds, 2009, 481(1–2): 692–696CrossRefGoogle Scholar
  15. [15]
    Jain A, Saroha R, Pastor M, et al. Effect of sintering duration on structural and electrical properties of Ba0.9Sr0.1Ti0.96Zr0.04O3 solid solution. Current Applied Physics, 2016, 16(8): 859–866CrossRefGoogle Scholar
  16. [16]
    Wang X, Huang R, Zhao Y, et al. Dielectric and tunable properties of Zr doped BST ceramics prepared by spark plasma sintering. Journal of Alloys and Compounds, 2012, 533(1): 25–28Google Scholar
  17. [17]
    Tawade C M, Madolappa S, Sharanappa N, et al. Microstructural and electrical study of (Ba0.6Sr0.4)(Zr1–xTix)O3 ceramics. IJRET, 2013, 2(8): 184–187CrossRefGoogle Scholar
  18. [18]
    Deng X Y, Wang X H, Li D J, et al. Electronic structure of nanograin barium titanate ceramics. Frontiers of Materials Science, 2007, 1(3): 316–318CrossRefGoogle Scholar
  19. [19]
    Saravanan R. Practical application of maximum entropy method in electron density and bonding studies. Physica Scripta, 2009, 79 (4): 048303 (8 pages)CrossRefGoogle Scholar
  20. [20]
    Rietveld H M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 1969, 2(2): 65–71CrossRefGoogle Scholar
  21. [21]
    Collins D M. Electron density images from imperfect data by iterative entropy maximization. Nature, 1982, 298(5869): 49–51CrossRefGoogle Scholar
  22. [22]
    Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, 1976, 32(5): 751–767CrossRefGoogle Scholar
  23. [23]
    Petricek V, Dusek M, Palatinus L. The crystallographic computing system JANA 2006: General features. Zeitschrift fur Kristallographie, 2014, 229(5): 345–352Google Scholar
  24. [24]
    Wyckoff R W G. Crystal Structures, Vol. 2. London: Inter-space Publishers,1963Google Scholar
  25. [25]
    Thongtha A, Angsukased K, Riyamongkol N, et al. Preparation of (Ba1–xSrx)(ZrxTi1–x)O3 ceramics via the solid state reaction method. Ferroelectrics, 2010, 403(1): 68–75CrossRefGoogle Scholar
  26. [26]
    Saravanan R. GRAIN software (personal communication)Google Scholar
  27. [27]
    Izumi F, Dilanien R A. Recent Research Developments in Physics, Part II, Vol. 3. Trivandrum, India: Transworld Research Network,2002Google Scholar
  28. [28]
    Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 2008, 41(3): 653–658CrossRefGoogle Scholar
  29. [29]
    Tauc J, Grigorovici R, Vancu Y. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi B, 1966, 15(2): 627–637CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jegannathan Mangaiyarkkarasi
    • 1
  • Subramanian Sasikumar
    • 2
  • Olai Vasu Saravanan
    • 2
  • Ramachandran Saravanan
    • 2
  1. 1.PG and Research Department of PhysicsNMSSVN CollegeNagamalai, MaduraiIndia
  2. 2.Research Centre and PG Department of PhysicsThe Madura CollegeMaduraiIndia

Personalised recommendations