Frontiers of Materials Science

, Volume 11, Issue 1, pp 42–50 | Cite as

Construction of Au@Pt core—satellite nanoparticles based on in-situ reduction of polymeric ionic liquid protected gold nanoparticles

  • Wenlan Wu
  • Junbo Li
  • Sheng Zou
  • Jinwu Guo
  • Huiyun Zhou
Research Article

Abstract

A method of in-situ reduction to prepare Au@Pt core-satellite nanoparticles (NPs) is described by using Au NPs coating poly[1-methyl 3-(2-methacryloyloxy propylimidazolium bromine)] (PMMPImB-@-Au NPs) as the template. After electrostatic complex chloroplatinic acid with PMMPImB shell, the composite NP was directly reduced with N2H4 to produce Au@Pt core-satellite NPs. The characterization of composite and core-satellite NPs under different amounts of chloroplatinic acid were studied by DLS, UV-vis absorption spectrum and TEM. The satellite Pt NPs with a small size (~2 nm) dotted around Au core, and the resulting Au@Pt core-satellite NPs showed a red-shift surface plasmon resonance (SPR) and a good dispersion due to effectively electrostatic repulsion providing by the polymeric ionic liquid (PIL) shell. Finally, Au@Pt core-satellite NPs exhibit an enhanced catalytic activity and cycled catalytic capability for the reduction of p-nitrophenol with NaBH4.

Keywords

polymeric ionic liquid gold nanoparticles platinum nanoparticles core-satellite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51103035 and 51403055).

References

  1. [1]
    Höller R P M, Dulle M, Thomä S, et al. Protein-assisted assembly of modular 3D plasmonic raspberry-like core/satellite nanoclusters: correlation of structure and optical properties. ACS Nano, 2016, 10(6): 5740–5750CrossRefGoogle Scholar
  2. [2]
    Rohani P, Sharma M K, Swihart M T. Core–satellite ZnS–Ag nanoassemblies: Synthesis, structure, and optical properties. Journal of Colloid and Interface Science, 2016, 463: 207–213CrossRefGoogle Scholar
  3. [3]
    Rong Z, Xiao R, Wang C, et al. Plasmonic Ag core–satellite nanostructures with a tunable silica-spaced nanogap for surfaceenhanced Raman scattering. Langmuir, 2015, 31(29): 8129–8137CrossRefGoogle Scholar
  4. [4]
    Xiong W, Sikdar D, Yap L W, et al. Multilayered core–satellite nanoassemblies with fine-tunable broadband plasmon resonances. Nanoscale, 2015, 7(8): 3445–3452CrossRefGoogle Scholar
  5. [5]
    Rodríguez-Fernández D, Langer J, Henriksen-Lacey M, et al. Hybrid Au–SiO2 core–satellite colloids as switchable SERS tags. Chemistry of Materials, 2015, 27(7): 2540–2545CrossRefGoogle Scholar
  6. [6]
    Waldeisen J R, Wang T, Ross B M, et al. Disassembly of a core–satellite nanoassembled substrate for colorimetric biomolecular detection. ACS Nano, 2011, 5(7): 5383–5389CrossRefGoogle Scholar
  7. [7]
    Hu J, Dong Y, Rahman Z, et al. In situ preparation of core–satellites nanostructural magnetic-Au NPs composite for catalytic degradation of organic contaminants. Chemical Engineering Journal, 2014, 254: 514–523CrossRefGoogle Scholar
  8. [8]
    Foroushani A, Zhang Y, Li D, et al. Tunnelling current recognition through core–satellite gold nanoparticles for ultrasensitive detection of copper ions. Chemical Communications, 2015, 51(14): 2921–2924CrossRefGoogle Scholar
  9. [9]
    Chou L Y, Zagorovsky K, Chan W C. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nature Nanotechnology, 2014, 9(2): 148–155CrossRefGoogle Scholar
  10. [10]
    Dey P, Zhu S, Thurecht K J, et al. Self assembly of plasmonic core–satellite nano assemblies mediated by hyper branched polymer linkers. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(19): 2827–2837CrossRefGoogle Scholar
  11. [11]
    Chu W, Zhang Y, Li D, et al. A biomimetic sensor for the detection of lead in water. Biosensors & Bioelectronics, 2015, 67: 621–624CrossRefGoogle Scholar
  12. [12]
    Zhang L, Xu Y, Yao H, et al. Boronic acid functionalized core–satellite composite nanoparticles for advanced enrichment of glycopeptides and glycoproteins. Chemistry, 2009, 15(39): 10158–10166CrossRefGoogle Scholar
  13. [13]
    Zou F M, Ding Q Q, Tran V T, et al. Magnetically recyclable catalytic activity of spiky magneto-plasmonic nanoparticles. RSC Advances, 2015, 5(70): 56653–56657CrossRefGoogle Scholar
  14. [14]
    Sun M, Xu L, Ma W, et al. Hierarchical plasmonic nanorods and upconversion core–satellite nanoassemblies for multimodal imaging-guided combination phototherapy. Advanced Materials, 2016, 28(5): 898–904CrossRefGoogle Scholar
  15. [15]
    Ge J, Zhang Q, Zhang T, et al. Core–satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. Angewandte Chemie International Edition, 2008, 47(46): 8924–8928CrossRefGoogle Scholar
  16. [16]
    Heinrich T, Traulsen C H, Holzweber M, et al. Coupled molecular switching processes in ordered mono- and multilayers of stimulusresponsive rotaxanes on gold surfaces. Journal of the American Chemical Society, 2015, 137(13): 4382–4390CrossRefGoogle Scholar
  17. [17]
    He X, Liu Z, Fan F, et al. Poly(ionic liquids) hollow nanospheres with PDMAEMA as joint support of highly dispersed gold nanoparticles for thermally adjustable catalysis. Journal of Nanoparticle Research, 2015, 17(2): 74 (10 pages)CrossRefGoogle Scholar
  18. [18]
    Mecerreyes D. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Progress in Polymer Science, 2011, 36(12): 1629–1648CrossRefGoogle Scholar
  19. [19]
    Amajjahe S, Ritter H. Microwave-sensitive foamable poly(ionic liquids) bearing tert-butyl ester groups: influence of counterions on the ester pyrolysis. Macromolecular Rapid Communications, 2009, 30(2): 94–98CrossRefGoogle Scholar
  20. [20]
    Li J B, Zhang S J, Liang J, et al. One-dimensional assembly of polymeric ionic liquid capped gold nanoparticles driven by electrostatic dipole interaction. RSC Advances, 2015, 5(11): 7994–8001CrossRefGoogle Scholar
  21. [21]
    Li J B, Zhao J, Wu W, et al. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles. Frontiers of Materials Science, 2016, 10(2): 178–186CrossRefGoogle Scholar
  22. [22]
    Zhang J, Meng L, Zhao D, et al. Fabrication of dendritic gold nanoparticles by use of an ionic polymer template. Langmuir, 2008, 24(6): 2699–2704CrossRefGoogle Scholar
  23. [23]
    Zhang H J, Li X, Chen G. Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters supported on TiO2. Journal of Materials Chemistry, 2009, 19(43): 8223–8231CrossRefGoogle Scholar
  24. [24]
    Anderson E B, Long T E. Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer, 2010, 51(12): 2447–2454CrossRefGoogle Scholar
  25. [25]
    Mecerreyes D. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Progress in Polymer Science, 2011, 36(12): 1629–1648CrossRefGoogle Scholar
  26. [26]
    Khatri O P, Adachi K, Murase K, et al. Self-assembly of ionic liquid (BMI-PF6)-stabilized gold nanoparticles on a silicon surface: chemical and structural aspects. Langmuir, 2008, 24(15): 7785–7792CrossRefGoogle Scholar
  27. [27]
    Yuan J Y, Wunder S, Warmuth F, et al. Spherical polymer brushes with vinylimidazolium-type poly(ionic liquid) chains as support for metallic nanoparticles. Polymer, 2012, 53(1): 43–49CrossRefGoogle Scholar
  28. [28]
    Kameyama T, Ohno Y, Kurimoto T, et al. Size control and immobilization of gold nanoparticles stabilized in an ionic liquid on glass substrates for plasmonic applications. Physical Chemistry Chemical Physics, 2010, 12(8): 1804–1811CrossRefGoogle Scholar
  29. [29]
    Shan C, Li F, Yuan F, et al. Size-controlled synthesis of monodispersed gold nanoparticles stabilized by polyelectrolytefunctionalized ionic liquid. Nanotechnology, 2008, 19(28): 285601CrossRefGoogle Scholar
  30. [30]
    Li J, Liang J, Wu W, et al. AuCl4 -responsive self-assembly of ionic liquid block copolymers for obtaining composite gold nanoparticles and polymeric micelles with controlled morphologies. New Journal of Chemistry, 2014, 38(6): 2508–2513CrossRefGoogle Scholar
  31. [31]
    Tian Y, Xia J, Zhang L, et al. Ionic liquid based polymeric liposomes: A stable and biocompatible soft platform for bioelectrochemistry. Bioelectrochemistry, 2016, 111: 41–48CrossRefGoogle Scholar
  32. [32]
    Buaki M, Aprile C, Dhakshinamoorthy A, et al. Liposomes by polymerization of an imidazolium ionic liquid: use as microreactors for gold-catalyzed alcohol oxidation. Chemistry, 2009, 15(47): 13082–13089CrossRefGoogle Scholar
  33. [33]
    Lee S, Cummins M D, Willing G A, et al. Conductivity of ionic liquid-derived polymers with internal gold nanoparticle conduits. Journal of Materials Chemistry, 2009, 19(43): 8092–8101CrossRefGoogle Scholar
  34. [34]
    Jones S T, Walsh-Korb Z, Barrow S J, et al. The importance of excess poly(N-isopropylacrylamide) for the aggregation of poly(N-isopropylacrylamide)-coated gold nanoparticles. ACS Nano, 2016, 10(3): 3158–3165CrossRefGoogle Scholar
  35. [35]
    Gracia R, Vijayakrishna K, Mecerreyes D. Poly(ionic liquid)s with redox active counter-anions: All-in-one reactants and stabilizers for the synthesis of functional colloids. Reactive & Functional Polymers, 2014, 79: 54–58CrossRefGoogle Scholar
  36. [36]
    Luo S, Xu J, Zhang Y, et al. Double hydrophilic block copolymer monolayer protected hybrid gold nanoparticles and their shell cross-linking. The Journal of Physical Chemistry B, 2005, 109(47): 22159–22166CrossRefGoogle Scholar
  37. [37]
    Ye Y S, Elabd Y A. Anion exchanged polymerized ionic liquids: High free volume single ion conductors. Polymer, 2011, 52(5): 1309–1317CrossRefGoogle Scholar
  38. [38]
    Yu B, Zhou F, Wang C, et al. A novel gel polymer electrolyte based on poly ionic liquid 1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium iodide. European Polymer Journal, 2007, 43(6): 2699–2707CrossRefGoogle Scholar
  39. [39]
    Glebov E M, Pozdnyakov I P, Plyusnin V F, et al. Primary reactions in the photochemistry of hexahalide complexes of platinum group metals: A mini review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 24: 1–5CrossRefGoogle Scholar
  40. [40]
    Kocak G, Bütün V. Synthesis and stabilization of Pt nanoparticles in core cross-linked micelles prepared from an amphiphilic diblock copolymer. Colloid & Polymer Science, 2015, 293(12): 3563–3572CrossRefGoogle Scholar
  41. [41]
    Lu Y, Yuan J, Polzer F, et al. In situ growth of catalytic active Au–Pt bimetallic nanorods in thermoresponsive core–shell microgels. ACS Nano, 2010, 4(12): 7078–7086CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Wenlan Wu
    • 2
  • Junbo Li
    • 1
  • Sheng Zou
    • 1
  • Jinwu Guo
    • 1
  • Huiyun Zhou
    • 1
  1. 1.College of Chemical Engineering & PharmaceuticsHenan University of Science & TechnologyLuoyangChina
  2. 2.Medical SchoolHenan University of Science & TechnologyLuoyangChina

Personalised recommendations