Frontiers of Materials Science

, Volume 11, Issue 1, pp 82–91 | Cite as

Surface functionalization of BiFeO3: A pathway for the enhancement of dielectric and electrical properties of poly(methyl methacrylate)–BiFeO3 composite films

  • Mukesh Kumar Mishra
  • Srikanta Moharana
  • Banarji Behera
  • Ram Naresh Mahaling
Research Article

Abstract

A novel two-phase composite film is prepared by the solvent casting method employing poly(methyl methacrylate) (PMMA) as polymer matrix and bismuth ferrite (BFO) as ceramic filler. The surfaces of BFO are functionalized by proper hydroxylating agents to activate their chemical nature. The structural analysis of the composite films confirms that the composites made up of functionalized BFO (BFO-OH) have a distorted rhombohedral structure. The morphological analysis shows that BFO-OH particles are equally distributed over the polymer matrix. The -OH functionality of BFO-OH is confirmed by FTIR. The dielectric and electrical studies at a frequency range from 100 Hz to 1 MHz reveal that PMMA-(BFO-OH) composites have enhanced dielectric constant as well as electrical conductivities, much higher than that of unmodified composites. According to the ferroelectric measurement result, the hydroxylated composite film shows a superior ferroelectric behavior than that of the unmodified one, with a remanent polarization (2Pr) of 2.764 μC/cm2.

Keywords

functionalized bismuth ferrite composites AC electrical conductivity dielectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to express our sincere thanks to Sambalpur University for providing the facilities for research works. We are also thankful to NIT Raipur for providing the facilities of XRD & SEM study and University Grant Commissions (UGC) (F. No: 42-277/2013) (SR), New Delhi, Government of India, for the financial support.

References

  1. [1]
    Yuan J K, Li W L, Yao S H, et al. High dielectric permittivity and low percolation threshold in polymer composites based on SiCcarbon nanotubes micro/nano hybrid. Applied Physics Letters, 2011, 98(3): 032901CrossRefGoogle Scholar
  2. [2]
    Vishnuvardhan T K, Kulkarni V R, Basavaraja C, et al. Synthesis, characterization and a.c. conductivity of polypyrrole/Y2O3 composites. Bulletin of Materials Science, 2006, 29(1): 77–83CrossRefGoogle Scholar
  3. [3]
    Sava F, Cristescu R, Socol G, et al. Structure of bulk and thin films of poly(methyl methacrilate (PMMA) polymer prepared by pulsed laser deposition. Journal of Optoelectronics and Advanced Materials, 2002, 4(4): 965–970Google Scholar
  4. [4]
    Grossiord N, Loos J, Koning C E, et al. Strategies for dispersing carbon nanotubes in highly viscous polymers. Journal of Materials Chemistry, 2005, 15(24): 2349–2352CrossRefGoogle Scholar
  5. [5]
    Arbatti M, Shan X, Cheng Z Y, et al. Ceramic–polymer composites with high dielectric constant. Advanced Materials, 2007, 19(10): 1369–1372CrossRefGoogle Scholar
  6. [6]
    Stefanescu E A, Tan X, Lin Z, et al. Multifunctional PMMA–ceramic composites as structural dielectrics. Polymer, 2010, 51(24): 5823–5832CrossRefGoogle Scholar
  7. [7]
    Wang H, Xiang F, Li K, et al. Ceramic–polymer Ba0.6Sr0.4TiO3/ poly(methyl methacrylate) composites with different type composite structures for electronic technology. Applied Ceramic Technology, 2010, 7(4): 435–443Google Scholar
  8. [8]
    Khattari Z, Maghrabi M, McNally T, et al. Impedance study of polymethyl methacrylate composites/multi-walled carbon nanotubes (PMMA/MWCNTs). Physica B: Condensed Matter, 2012, 407(4): 759–764CrossRefGoogle Scholar
  9. [9]
    Jung S, Baeg K, Yoon S, et al. Low-voltage-operated top-gate polymer thin-film transistors with high capacitance poly(vinylidene fluoride-trifluoroethylene)/poly(methyl methacrylate) dielectrics. Journal of Applied Physics, 2010, 108(10): 102810CrossRefGoogle Scholar
  10. [10]
    Ahlawat A, Satapathy S, Bhartiya S, et al. BiFeO3/poly(methyl methacrylate) nanocomposite films: A study on magnetic and dielectric properties. Applied Physics Letters, 2014, 104(4): 042902 (3 pages)CrossRefGoogle Scholar
  11. [11]
    Fiebig M, Lottermoser T, Fröhlich D, et al. Observation of coupled magnetic and electric domains. Nature, 2002, 419(6909): 818–820CrossRefGoogle Scholar
  12. [12]
    Loh K J, Chang D. Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing. Journal of Materials Science, 2011, 46(1): 228–237CrossRefGoogle Scholar
  13. [13]
    Setvín M, Daniel B, Mansfeldova V, et al. Surface preparation of TiO2 anatase (101): Pitfalls and how to avoid them. Surface Science, 2014, 626: 61–67CrossRefGoogle Scholar
  14. [14]
    Beier C W, Cuevas M A, Brutchey R L. Effect of surface modification on the dielectric properties of BaTiO3 nanocrystals. Langmuir, 2010, 26(7): 5067–5071CrossRefGoogle Scholar
  15. [15]
    Kim P, Jones S C, Hotchkiss P J, et al. Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Advanced Materials, 2007, 19(7): 1001–1005CrossRefGoogle Scholar
  16. [16]
    Song Y, Shen Y, Liu H Y, et al. Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. Journal of Materials Chemistry, 2012, 22(32): 16491–16498CrossRefGoogle Scholar
  17. [17]
    Chon J, Ye S, Cha K J, et al. High-dielectric sol–gel hybrid materials containing barium titanate nanoparticles. Chemistry of Materials, 2010, 22(19): 5445–5452CrossRefGoogle Scholar
  18. [18]
    Li J, Claude J, Norena-Franco L E, et al. Electrical energy storage in ferroelectric polymer nanocomposites containing surfacefunctionalized BaTiO3 nanoparticles. Chemistry of Materials, 2008, 20(20): 6304–6306CrossRefGoogle Scholar
  19. [19]
    Chu L W, Prakash K N, Tsai M T, et al. Dispersion of nano-sized BaTiO3 powders in nonaqueous suspension with phosphate ester and their applications for MLCC. Journal of the European Ceramic Society, 2008, 28(6): 1205–1212CrossRefGoogle Scholar
  20. [20]
    Sharma S, Tomar M, Kumar A, et al. Multiferroic properties of BiFeO3/BaTiO3 multilayered thin films. Physica B: Condensed Matter, 2014, 448: 125–127CrossRefGoogle Scholar
  21. [21]
    Lee M H, Lee S C, Sung Y S, et al. Improvement of ferroelectric and leakage current properties with Zn–Mn co-doping in BiFeO3 thin films. Ferroelectrics, 2010, 401(1): 186–191CrossRefGoogle Scholar
  22. [22]
    Godara S, Sinha N, Ray G, et al. Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route. Journal of Asian Ceramic Societies, 2014, 2(4): 416–421CrossRefGoogle Scholar
  23. [23]
    Xie L, Huang X, Huang Y, et al. Core@double-shell structured BaTiO3–polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. The Journal of Physical Chemistry C, 2013, 117(44): 22525–22537CrossRefGoogle Scholar
  24. [24]
    Paniagua S A, Kim Y, Henry K, et al. Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Applied Materials & Interfaces, 2014, 6(5): 3477–3482CrossRefGoogle Scholar
  25. [25]
    Bajpai O P, Kamdi J B, Selvakumar M, et al. Effect of surface modification of BiFeO3 on the dielectric, ferroelectric, magneto–dielectric properties of polyvinylacetate/BiFeO3 nanocomposites. Express Polymer Letters, 2014, 8(9): 669–681CrossRefGoogle Scholar
  26. [26]
    Ray D K, Himanshu A K, Sinha T P, et al. Structural and low frequency dielectric studies of conducting polymer nanocomposites. Indian Journal of Pure and Applied Physics, 2007, 45: 692–699Google Scholar
  27. [27]
    Tripathi S K, Gupta A, Kumari M, et al. Studies on electrical conductivity and dielectric behaviour of PVdF–HFP–PMMA–NaI polymer blend electrolyte. Bulletin of Materials Science, 2012, 35(6): 969–975CrossRefGoogle Scholar
  28. [28]
    Zhao R, Zhao J, Wang L, et al. Reduced sedimentation of barium titanate nanoparticles in poly(vinylidene fluoride) films during solution casting by surface modification. Journal of Applied Polymer Science, 2015, 132(42): 42662CrossRefGoogle Scholar
  29. [29]
    Prakash B S, Varma K B R. Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxy composites. Composites Science and Technology, 2007, 67(11–12): 2363–2368CrossRefGoogle Scholar
  30. [30]
    Sengwa R J, Choundhary S, Sankhla S. Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites. Composites Science and Technology, 2010, 70(11): 1621–1627CrossRefGoogle Scholar
  31. [31]
    Catalan G, Scott J F. Physics and applications of bismuth ferrite. Advanced Materials, 2009, 21(24): 2463–2485CrossRefGoogle Scholar
  32. [32]
    Luther G. Dielectric dispersion of ferroelectric triglycine sulphate in the microwave region. Physica Status Solidi A: Applied Research, 1973, 20(1): 227–236CrossRefGoogle Scholar
  33. [33]
    Thakur V K, Tan E J, Lin M F, et al. Poly(vinylidene fluoride)-graft-poly(2-hydroxyethyl methacrylate): a novel material for high energy density capacitors. Journal of Materials Chemistry, 2011, 21(11): 3751–3759CrossRefGoogle Scholar
  34. [34]
    Jayalakshmi M, Balasubramanian K. Simple capacitors to supercapacitors - an overview. International Journal of Electrochemical Science, 2008, 3: 1196–1217Google Scholar
  35. [35]
    Rajalakshmi R, Kambhala N, Angappane S, et al. Enhanced magnetic properties of chemical solution deposited BiFeO3 thin film with ZnO buffer layer. Materials Science and Engineering B, 2012, 177(11): 908–912CrossRefGoogle Scholar
  36. [36]
    Ramesh S, Liew C W, Arof A K. Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3- methylimidazolium hexafluorophosphate. Journal of Non-Crystalline Solids, 2011, 357(21): 3654–3660CrossRefGoogle Scholar
  37. [37]
    Park J H, Hwang D K, Lee J, et al. Studies on poly(methyl methacrylate) dielectric layer for field effect transistor: Influence of polymer tacticity. Thin Solid Films, 2007, 515(7–8): 4041–4044CrossRefGoogle Scholar
  38. [38]
    Gravatt C C, Gross P M. Effect of hydrogen bonding on the electrical conductivity of organic solids. Journal of Chemical Physics, 1967, 46(2): 413CrossRefGoogle Scholar
  39. [39]
    Singh V R, Dixit A, Garg A, et al. Effect of heat treatment on the structure and properties of chemical solution processed multiferroic BiFeO3 thin films. Applied Physics A: Materials Science & Processing, 2008, 90(1): 197–202CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mukesh Kumar Mishra
    • 1
  • Srikanta Moharana
    • 1
  • Banarji Behera
    • 2
  • Ram Naresh Mahaling
    • 1
  1. 1.Laboratory of Polymeric and Materials Chemistry, School of ChemistrySambalpur UniversityOdishaIndia
  2. 2.Materials Research Laboratory, School of PhysicsSambalpur UniversityOdishaIndia

Personalised recommendations