Probing the catalytic activity of M-N4−xOx embedded graphene for the oxygen reduction reaction by density functional theory

Abstract

In this work, the detailed oxygen reduction reaction (ORR) catalytic performance of M-N4−xOx (M = Fe, Co, and Ni; x =1−4) has been explored via the detailed density functional theory method. The results suggest that the formation energy of M-N4−xOx shows a good linear relationship with the number of doped O atoms. The adsorption manner of O2 on M-N4−xOx changed from end-on (x = 1 and 2) to side-on (x = 3 and 4), and the adsorption strength gradually increased. Based on the results for binding strength of ORR intermediates and the Gibbs free energy of ORR steps on the studied catalysts, we screened out two highly active ORR catalysts, namely Co-N3O1 and Ni-N2O2, which possess very small overpotentials of 0.27 and 0.32 V, respectively. Such activities are higher than the precious Pt catalyst. Electronic structure analysis reveals one of the reasons for the higher activity of Co-N3O1 and Ni-N2O2 is that they have small energy gaps and moderate highest occupied molecular orbital energy levels. Furthermore, the results of the density of states reveal that the O doping can improve the electronic structure of the original catalyst to tune the adsorption of the ORR intermediates.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Kabir E, Kumar P, Kumar S, Adelodun A A, Kim K H. Solar energy: potential and future prospects. Renewable & Sustainable Energy Reviews, 2018, 82: 894–900

    Article  Google Scholar 

  2. 2.

    Podjaski F, Kröger J, Lotsch B V. Toward an aqueous solar battery: direct electrochemical storage of solar energy in carbon nitrides. Advanced Materials, 2018, 30(9): 1705477

    Article  CAS  Google Scholar 

  3. 3.

    Sorgulu F, Dincer I. A renewable source based hydrogen energy system for residential applications. International Journal of Hydrogen Energy, 2018, 43(11): 5842–5851

    CAS  Article  Google Scholar 

  4. 4.

    Endo N, Shimoda E, Goshome K, Yamane T, Nozu T, Maeda T. Simulation of design and operation of hydrogen energy utilization system for a zero emission building. International Journal of Hydrogen Energy, 2019, 44(14): 7118–7124

    CAS  Article  Google Scholar 

  5. 5.

    Zhang L, Shan B, Zhao Y, Guo Z. Review of micro seepage mechanisms in shale gas reservoirs. International Journal of Heat and Mass Transfer, 2019, 139: 144–179

    Article  Google Scholar 

  6. 6.

    Feng G, An L, Li B, Zuo Y, Song J, Ning F, Jiang N, Cheng X, Zhang Y, Xia D. Atomically ordered non-precious Co3Ta intermetallic nanoparticles as high-performance catalysts for hydrazine electrooxidation. Nature Communications, 2019, 10(1): 4514

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Chen X, Sun F, Bai F, Xie Z. DFT study of the two dimensional metal-organic frameworks X3(HITP)2 as the cathode electrocatalysts for fuel cell. Applied Surface Science, 2019, 471: 256–262

    CAS  Article  Google Scholar 

  8. 8.

    Zhang D, Wu F, Peng M, Wang X, Xia D, Guo G. One-step, facile and ultrafast synthesis of phase- and size-controlled Pt-Bi intermetallic nanocatalysts through continuous-flow microfluidics. Journal of the American Chemical Society, 2015, 137(19): 6263–6269

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    An L, Yan H, Chen X, Li B, Xia Z, Xia D. Catalytic performance and mechanism of N-CoTi@CoTiO3 catalysts for oxygen reduction reaction. Nano Energy, 2016, 20: 134–143

    CAS  Article  Google Scholar 

  10. 10.

    Lee J M, Han H, Jin S, Choi S M, Kim H J, Seo M H, Kim W B. A review on recent progress in the aspect of stability of oxygen reduction electrocatalysts for proton-exchange membrane fuel cell: quantum mechanics and experimental approaches. Energy Technology (Weinheim), 2019, 7(9): 1900312

    Article  CAS  Google Scholar 

  11. 11.

    Kacprzak A. Hydroxide electrolyte direct carbon fuel cells—technology review. International Journal of Energy Research, 2019, 43(1): 65–85

    CAS  Article  Google Scholar 

  12. 12.

    Dekel D R. Review of cell performance in anion exchange membrane fuel cells. Journal of Power Sources, 2018, 375: 158–169

    CAS  Article  Google Scholar 

  13. 13.

    Chen X, Huang S, Sun F, Lai N. Modifications of metal and ligand to modulate the oxygen reduction reaction activity of two-dimensional MOF catalysts. Journal of Physical Chemistry C, 2020, 124(2): 1413–1420

    CAS  Article  Google Scholar 

  14. 14.

    Song Y, Zhang X, Cui X, Shi J. The ORR kinetics of ZIF-derived Fe-N-C electrocatalysts. Journal of Catalysis, 2019, 372: 174–181

    CAS  Article  Google Scholar 

  15. 15.

    Kulkarni A, Siahrostami S, Patel A, Nørskov J K. Understanding catalytic activity trends in the oxygen reduction reaction. Chemical Reviews, 2018, 118(5): 2302–2312

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Dong Y, Deng Y, Zeng J, Song H, Liao S. A high-performance composite ORR catalyst based on the synergy between binary transition metal nitride and nitrogen-doped reduced graphene oxide. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(12): 5829–5837

    CAS  Article  Google Scholar 

  17. 17.

    Jiang H, Gu J, Zhen X, Li M, Qiu X, Wang L, Li W, Chen Z, Ji X, Li J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy & Environmental Science, 2019, 12(1): 322–333

    CAS  Article  Google Scholar 

  18. 18.

    Kreider M E, Gallo A, Back S, Liu Y, Siahrostami S, Nordlund D, Sinclair R, Nørskov J K, King L A, Jaramillo T F. Precious metalfree nickel nitride catalyst for the oxygen reduction reaction. ACS Applied Materials & Interfaces, 2019, 11(30): 26863–26871

    CAS  Article  Google Scholar 

  19. 19.

    Zou X, Wang L, Yakobson B I. Mechanisms of the oxygen reduction reaction on B- and/or N-doped carbon nanomaterials with curvature and edge effects. Nanoscale, 2018, 10(3): 1129–1134

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Lin Y, Liu P, Velasco E, Yao G, Tian Z, Zhang L, Chen L. Fabricating single-atom catalysts from chelating metal in open frameworks. Advanced Materials, 2019, 31(18): 1808193

    Article  CAS  Google Scholar 

  21. 21.

    Sun F, Chen X. Oxygen reduction reaction on Ni3(HITP)2:a catalytic site that leads to high activity. Electrochemistry Communications, 2017, 82: 89–92

    CAS  Article  Google Scholar 

  22. 22.

    Zheng X, Wu J, Cao X, Abbott J, Jin C, Wang H, Strasser P, Yang R, Chen X, Wu G. N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Applied Catalysis B: Environmental, 2019, 241: 442–451

    CAS  Article  Google Scholar 

  23. 23.

    Zhu C, Shi Q, Xu B Z, Fu S, Wan G, Yang C, Yao S, Song J, Zhou H, Du D, Beckman S P, Su D, Lin Y. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Advanced Energy Materials, 2018, 8(29): 1801956

    Article  CAS  Google Scholar 

  24. 24.

    Amiinu I S, Liu X, Pu Z, Li W, Li Q, Zhang J, Tang H, Zhang H, Mu S. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-Air batteries. Advanced Functional Materials, 2018, 28(5): 1704638

    Article  CAS  Google Scholar 

  25. 25.

    Dong Y, Zhou M, Tu W, Zhu E, Chen Y, Zhao Y, Liao S, Huang Y, Chen Q, Li Y. Hollow loofah-like N, O-co-doped carbon tube for electrocatalysis of oxygen reduction. Advanced Functional Materials, 2019, 29(18): 1900015

    Article  CAS  Google Scholar 

  26. 26.

    Chen X, Ge F, Lai N N. O co-doped graphene as a potential catalyst for the oxygen reduction reaction. Journal of the Electrochemical Society, 2019, 166(12): F847–F851

    Article  CAS  Google Scholar 

  27. 27.

    Yang Y, Mao K, Gao S, Huang H, Xia G, Lin Z, Jiang P, Wang C, Wang H, Chen Q. O-, N-atoms-coordinated Mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Advanced Materials, 2018, 30(28): 1801732

    Article  CAS  Google Scholar 

  28. 28.

    Peng H, Liu F, Liu X, Liao S, You C, Tian X, Nan H, Luo F, Song H, Fu Z, Huang P. Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for ORR application. ACS Catalysis, 2014, 4(10): 3797–3805

    CAS  Article  Google Scholar 

  29. 29.

    Masa J, Zhao A, Xia W, Muhler M, Schuhmann W. Metal-free catalysts for oxygen reduction in alkaline electrolytes: influence of the presence of Co, Fe, Mn and Ni inclusions. Electrochimica Acta, 2014, 128: 271–278

    CAS  Article  Google Scholar 

  30. 30.

    Wang X, Cullen D A, Pan Y T, Hwang S, Wang M, Feng Z, Wang J, Engelhard M H, Zhang H, He Y, Shao Y, Su D, More K L, Spendelow J S, Wu G. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Advanced Materials, 2018, 30(11): 1706758

    Article  CAS  Google Scholar 

  31. 31.

    Delley B. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764

    CAS  Article  Google Scholar 

  32. 32.

    Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77 (18): 3865–3868

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics, 1990, 92(1): 508–517

    CAS  Article  Google Scholar 

  34. 34.

    Chen X, Ge F, Chen T, Lai N. The effect of GGA functionals on the oxygen reduction reaction catalyzed by Pt(111) and FeN4 doped graphene. Journal of Molecular Modeling, 2019, 25(7): 180

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  35. 35.

    Chen X. Graphyne nanotubes as electrocatalysts for oxygen reduction reaction: the effect of doping elements on the catalytic mechanisms. Physical Chemistry Chemical Physics, 2015, 17(43): 29340–29343

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Modak B, Srinivasu K, Ghosh S K. Exploring metal decorated porphyrin-like porous fullerene as catalyst for oxygen reduction reaction: a DFT study. International Journal of Hydrogen Energy, 2017, 42(4): 2278–2287

    CAS  Article  Google Scholar 

  37. 37.

    Chen X, Qiao Q, An L, Xia D. Why do boron and nitrogen doped α- and γ-graphyne exhibit different oxygen reduction mechanism? a first-principles study. Journal of Physical Chemistry C, 2015, 119 (21): 11493–11498

    CAS  Article  Google Scholar 

  38. 38.

    Zhang X, Yang Z, Lu Z, Wang W. Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: a theoretical evaluation. Carbon, 2018, 130: 112–119

    CAS  Article  Google Scholar 

  39. 39.

    Calle-Vallejo F, Martinez J I, Rossmeisl J. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Physical Chemistry Chemical Physics, 2011, 13(34): 15639–15643

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Vayner E, Anderson A B. Theoretical predictions concerning oxygen reduction on nitrided graphite edges and a cobalt center bonded to them. Journal of Physical Chemistry C, 2007, 111(26): 9330–9336

    CAS  Article  Google Scholar 

  41. 41.

    Wang S, Zhang L, Xia Z, Roy A, Chang D W, Baek J B, Dai L. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angewandte Chemie International Edition, 2012, 51(17): 4209–4212

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Bhatt M D, Lee G, Lee J S. Oxygen reduction reaction mechanisms on Al-doped X-graphene (X = N, P, and S) catalysts in acidic medium: a comparative DFT study. Journal of Physical Chemistry C, 2016, 120(46): 26435–26441

    CAS  Article  Google Scholar 

  43. 43.

    Xue L, Li Y, Liu X, Liu Q, Shang J, Duan H, Dai L, Shui J. Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nature Communications, 2018, 9(1): 3819

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Chen X, Li F, Zhang N, An L, Xia D. Mechanism of oxygen reduction reaction catalyzed by Fe(Co)-Nx/C. Physical Chemistry Chemical Physics, 2013, 15(44): 19330–19336

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Chen X, Sun F, Chang J. Cobalt or nickel doped SiC nanocages as efficient electrocatalyst for oxygen reduction reaction: a computational prediction. Journal of the Electrochemical Society, 2017, 164 (6): F616–F619

    CAS  Article  Google Scholar 

  46. 46.

    Chen X, Chang J, Ke Q. Probing the activity of pure and N-doped fullerenes towards oxygen reduction reaction by density functional theory. Carbon, 2018, 126: 53–57

    CAS  Article  Google Scholar 

  47. 47.

    Zhang X, Lu Z, Yang Z. The mechanism of oxygen reduction reaction on CoN4 embedded graphene: a combined kinetic and atomistic thermodynamic study. International Journal of Hydrogen Energy, 2016, 41(46): 21212–21220

    CAS  Article  Google Scholar 

  48. 48.

    Zhang J, Wang Z, Zhu Z. The inherent kinetic electrochemical reduction of oxygen into H2O on FeN4-carbon: a density functional theory study. Journal of Power Sources, 2014, 255: 65–69

    CAS  Article  Google Scholar 

  49. 49.

    Chen X, Hu R. DFT-based study of single transition metal atom doped g-C3N4 as alternative oxygen reduction reaction catalysts. International Journal of Hydrogen Energy, 2019, 44(29): 15409–15416

    CAS  Article  Google Scholar 

  50. 50.

    Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jønsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886–17892

    Article  CAS  Google Scholar 

  51. 51.

    Tripković V, Skúlason E, Siahrostami S, Nørskov J K, Rossmeisl J. The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations. Electrochimica Acta, 2010, 55(27): 7975–7981

    Article  CAS  Google Scholar 

  52. 52.

    Aihara J. Reduced HOMO-LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. Journal of Physical Chemistry A, 1999, 103(37): 7487–7495

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Applied Basic Research Project of Science and Technology Department of Sichuan Province (Grant No. 2020YJ0418), the Youth Science and Technology Innovation Team of Southwest Petroleum University (Grant No. 2018CXTD05), the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation of Southwest Petroleum University (Grant No. PLN201925), and the Postgraduate Research and Innovation Fund of Southwest Petroleum University (Grant No. 2019cxzd027).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ge, F., Qiao, Q., Chen, X. et al. Probing the catalytic activity of M-N4−xOx embedded graphene for the oxygen reduction reaction by density functional theory. Front. Chem. Sci. Eng. (2021). https://doi.org/10.1007/s11705-020-2017-7

Download citation

Keywords

  • M-N-C catalyst
  • oxygen doping
  • oxygen reduction reaction
  • catalytic activity
  • density functional theory