Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications

Abstract

Two-dimensional (2D) materials have emerged as a class of promising materials to prepare highperformance 2D membranes for various separation applications. The precise control of the interlayer nano-channel/sub-nanochannel between nanosheets or the pore size of nanosheets within 2D membranes enables 2D membranes to achieve promising molecular sieving performance. To date, many 2D membranes with high permeability and high selectivity have been reported, exhibiting high separation performance. This review presents the development, progress, and recent breakthrough of different types of 2D membranes, including membranes based on porous and non-porous 2D nanosheets for various separations. Separation mechanism of 2D membranes and their fabrication methods are also reviewed. Last but not the least, challenges and future directions of 2D membranes for wide utilization are discussed in brief.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Robeson L M. The upper bound revisited. Journal of Membrane Science, 2008, 320(1–2): 390–400

    CAS  Article  Google Scholar 

  2. 2.

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Duong D D. Adsorption Analysis: Equilibria and Kinetics. London: London Imperial College Press, 1998, 239–240

    Google Scholar 

  4. 4.

    Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Shen J, Liu G, Huang K, Chu Z, Jin W, Xu N. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano, 2016, 10(3): 3398–3409

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Shen J, Liu G, Ji Y, Liu Q, Cheng L, Guan K, Zhang M, Liu G, Xiong J, Yang J, et al. 2D MXene nanofilms with tunable gas transport channels. Advanced Functional Materials, 2018, 28(31): 1801511

    Article  CAS  Google Scholar 

  7. 7.

    Wang J, Chen P, Shi B, Guo W, Jaroniec M, Qiao S. A regularly channeled lamellar membrane for unparalleled water and organics permeation. Angewandte Chemie International Edition, 2018, 130 (23): 6930–6934

    Article  Google Scholar 

  8. 8.

    Ibrahim A, Lin Y S. Gas permeation and separation properties of large-sheet stacked graphene oxide membranes. Journal of Membrane Science, 2017, 550: 238–245

    Article  CAS  Google Scholar 

  9. 9.

    Nielsen L E. Models for the permeability of filled polymer systems. Journal of Macromolecular Science: Part A—Chemistry, 1967, 1 (5): 929–942

    CAS  Article  Google Scholar 

  10. 10.

    Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chemical Reviews, 2017, 117(9): 6225–6331

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Samori P, Palermo V, Feng X. Chemical approaches to 2D materials. Advanced Materials, 2016, 28(29): 6027–6029

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Nie L, Goh K, Wang Y, Lee J, Huang Y, Karahan H E, Zhou K, Guiver M D, Bae T H. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration. Science Advances, 2020, 6(17): eaaz9184

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Li H, Song Z, Zhang X, Huang Y, Li S, Mao Y, Ploehn H J, Bao Y, Yu M. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science, 2013, 342(6154): 95–98

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Zhang M, Guan K, Ji Y, Liu G, Jin W, Xu N. Controllable ion transport by surface-charged graphene oxide membrane. Nature Communications, 2019, 10: 1253

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 129(7): 1851–1855

    Article  Google Scholar 

  17. 17.

    Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding L X, Wang S, Caro J, Gogotsi Y. MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9: 155

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Li H, Ko T J, Lee M, Chung H S, Han S S, Oh K H, Sadmani A, Kang H, Jung Y. Experimental realization of few layer two-dimensional MoS2 membranes of near atomic thickness for high efficiency water desalination. Nano Letters, 2019, 19(8): 5194–5204

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Chen D, Wang W, Ying W, Guo Y, Meng D, Yan Y, Yan R, Peng X. CO2-philic WS2 laminated membranes with a nanoconfined ionic liquid. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(34): 16566–16573

    CAS  Article  Google Scholar 

  20. 20.

    Kim D, Jeon M, Stottrup B L, Tsapatsis M. Paraxylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air-water interface. Angewandte Chemie International Edition, 2018, 130(2): 489–494

    Article  Google Scholar 

  21. 21.

    Cao Z, Zeng S, Xu Z, Arvanitis A, Yang S, Gu X, Dong J. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines. Science Advances, 2018, 4 (11): eaau8634

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Peng Y, Li Y, Ban Y, Yang W. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angewandte Chemie International Edition, 2017, 56(33): 9757–9761

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Wang X, Chi C, Zhang K, Qian Y, Gupta K M, Kang Z, Jiang J, Zhao D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017, 8: 14460

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Yang H, Yang L, Wang H, Xu Z, Zhao Y, Luo Y, Nasir N, Song Y, Wu H, Pan F, et al. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nature Communications, 2019, 10: 2101

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Ying Y, Tong M, Ning S, Ravi S K, Peh S B, Tan S C, Pennycook S J, Zhao D. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. Journal of the American Chemical Society, 2020, 142 (9): 4472–4480

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Wang Y, Li L, Wei Y, Xue J, Chen H, Ding L, Caro J, Wang H. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angewandte Chemie International Edition, 2017, 56(31): 8974–8980

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Ran J, Pan T, Wu Y, Chu C, Cui P, Zhang P, Ai X, Fu C F, Yang Z, Xu T. Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers. Angewandte Chemie International Edition, 2019, 58(46): 16463–16468

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Tsapatsis M. 2-Dimensional zeolites. AIChE Journal. American Institute of Chemical Engineers, 2014, 60(7): 2374–2381

    CAS  Article  Google Scholar 

  29. 29.

    Choi M, Na K, Kim J, Sakamoto Y, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society, 2010, 132(12): 4169–4177

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Varoon K, Zhang X, Elyassi B, Brewer D D, Gettel M, Kumar S, Lee J A, Maheshwari S, Mittal A, Sung C Y, et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science, 2011, 334(6052): 72–75

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Agrawal K V, Topuz B, Jiang Z, Nguenkam K, Elyassi B, Francis L F, Tsapatsis M. Solution-processable exfoliated zeolite nanosheets purified by density gradient centrifugation. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(9): 3458–3467

    CAS  Article  Google Scholar 

  33. 33.

    Pham T C, Nguyen T H, Yoon K B. Gel-free secondary growth of uniformly oriented silica MFI zeolite films and application for xylene separation. Angewandte Chemie, 2013, 125(33): 8855–8860

    Article  Google Scholar 

  34. 34.

    Agrawal K V, Topuz B, Pham T, Thanh T, Sauer N, Rangnekar N, Zhang H, Narasimharao K, Basahel S N, Francis L F, et al. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers. Advanced Materials, 2015, 27(21): 3243–3249

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Jeon M Y, Kim D, Kumar P, Lee P S, Rangnekar N, Bai P, Shete M, Elyassi B, Lee H S, Narasimharao K, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature, 2017, 543(7647): 690–694

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Min B, Yang S, Korde A, Kwon Y H, Jones C W, Nair S. Continuous zeolite MFI membranes fabricated from 2D MFI nanosheets on ceramic hollow fibers. Angewandte Chemie, 2019, 131(24): 8285–8289

    Article  Google Scholar 

  37. 37.

    Choi J, Lai Z, Ghosh S, Beving D E, Yan Y, Tsapatsis M. Layer-by-layer deposition of barrier and permselective c-oriented-MCM-22 silica composite films. Industrial & Engineering Chemistry Research, 2007, 46(22): 7096–7106

    CAS  Article  Google Scholar 

  38. 38.

    Choi J, Tsapatsis M. MCM-22 silica selective flake nanocomposite membranes for hydrogen separations. Journal of the American Chemical Society, 2010, 132(2): 448–449

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Choi S, Coronas J, Jordan E, Oh W, Nair S, Onorato F, Shantz D F, Tsapatsis M. Layered silicates by swelling of AMH-3 and nanocomposite membranes. Angewandte Chemie International Edition, 2008, 47(3): 552–555

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Kim W, Lee J S, Bucknall D G, Koros W J, Nair S. Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations. Journal of Membrane Science, 2013, 441: 129–136

    CAS  Article  Google Scholar 

  41. 41.

    Galve A, Sieffert D, Vispe E, Téllez C, Coronas J, Staudt C. Copolyimide mixed matrix membranes with oriented microporous titanosilicate JDF-L1 sheet particles. Journal of Membrane Science, 2011, 370(1–2): 131–140

    CAS  Article  Google Scholar 

  42. 42.

    Castarlenas S, Gorgojo P, Casado C, Masheshwari S, Tsapatsis M, Téllez C, Coronas J. Melt compounding of swollen titanosilicate JDF-L1 with polysulfone to obtain mixed matrix membranes for H2/CH4 separation. Industrial & Engineering Chemistry Research, 2013, 52(5): 1901–1907

    CAS  Article  Google Scholar 

  43. 43.

    Galve A, Sieffert D, Staudt C, Ferrando M, Güell C, Téllez C, Coronas J. Combination of ordered mesoporous silica MCM-41 and layered titanosilicate JDF-L1 fillers for 6FDA-based copolyimide mixed matrix membranes. Journal of Membrane Science, 2013, 431: 163–170

    CAS  Article  Google Scholar 

  44. 44.

    Wei X L, Pan W Y, Li X, Pan M, Huo C F, Yang R, Chao Z S. MCM-22 zeolite-induced synthesis of thin sodalite zeolite membranes. Chemistry of Materials, 2020, 32(1): 333–340

    CAS  Article  Google Scholar 

  45. 45.

    Ma N, Wei J, Liao R, Tang C Y. Zeolite-polyamide thin film nanocomposite membranes: towards enhanced performance for forward osmosis. Journal of Membrane Science, 2012, 405–406: 149–157

    Article  CAS  Google Scholar 

  46. 46.

    Peng Y, Yang W. 2D metal-organic framework materials for membrane-based separation. Advanced Materials Interfaces, 2020, 7(1): 1901514

    CAS  Article  Google Scholar 

  47. 47.

    Jian M, Qiu R, Xia Y, Lu J, Chen Y, Gu Q, Liu R, Hu C, Qu J, Wang H, et al. Ultrathin water-stable metal-organic framework membranes for ion separation. Science Advances, 2020, 6(23): eaay3998

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabres I X F X, Gascon J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2015, 14(1): 48–55

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Kang Z, Peng Y, Hu Z, Qian Y, Chi C, Yeo L Y, Tee L, Zhao D. Mixed matrix membranes composed of two-dimensional metal-organic framework nanosheets for pre-combustion CO2 capture: a relationship study of filler morphology versus membrane performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(41): 20801–20810

    CAS  Article  Google Scholar 

  50. 50.

    Cheng Y, Wang X, Jia C, Wang Y, Zhai L, Wang Q, Zhao D. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. Journal of Membrane Science, 2017, 539: 213–223

    CAS  Article  Google Scholar 

  51. 51.

    Yang Y, Goh K, Wang R, Bae T H. High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets. Chemical Communications, 2017, 53 (30): 4254–4257

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Yang F, Wu M, Wang Y, Ashtiani S, Jiang H. A GO-induced assembly strategy to repair MOF nanosheet-based membrane for efficient H2/CO2 separation. ACS Applied Materials & Interfaces, 2019, 11(1): 990–997

    CAS  Article  Google Scholar 

  53. 53.

    Zhong Z, Yao J, Chen R, Low Z, He M, Liu J Z, Wang H. Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3 (30): 15715–15722

    CAS  Article  Google Scholar 

  54. 54.

    Ang H, Hong L. Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration. ACS Applied Materials & Interfaces, 2017, 9(33): 28079–28088

    CAS  Article  Google Scholar 

  55. 55.

    Li Y, Liu H, Wang H, Qiu J, Zhang X. GO-guided direct growth of highly oriented metal-organic framework nanosheet membranes for H2/CO2 separation. Chemical Science (Cambridge), 2018, 9 (17): 4132–4141

    CAS  Article  Google Scholar 

  56. 56.

    Li Y, Lin L, Tu M, Nian P, Howarth A J, Farha O K, Qiu J, Zhang X. Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Research, 2018, 11(4): 1850–1860

    CAS  Article  Google Scholar 

  57. 57.

    Nian P, Liu H, Zhang X. Bottom-up fabrication of two-dimensional Co-based zeolitic imidazolate framework tubular membranes consisting of nanosheets by vapor phase transformation of Co-based gel for H2/CO2 separation. Journal of Membrane Science, 2019, 573: 200–209

    CAS  Article  Google Scholar 

  58. 58.

    Lin L C, Choi J, Grossman J C. Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination. Chemical Communications, 2015, 51(80): 14921–14924

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Tong M, Yang Q, Ma Q, Liu D, Zhong C. Few-layered ultrathin covalent organic framework membranes for gas separation: a computational study. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(1): 124–131

    CAS  Google Scholar 

  60. 60.

    Wang Y, Li J, Yang Q, Zhong C. Two-dimensional covalent triazine framework membrane for helium separation and hydrogen purification. ACS Applied Materials & Interfaces, 2016, 8(13): 8694–8701

    CAS  Article  Google Scholar 

  61. 61.

    Yao J, Liu C, Liu X, Guo J, Zhang S, Zheng J, Li S. Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane. Journal of Membrane Science, 2020, 601: 117864

    Article  CAS  Google Scholar 

  62. 62.

    Dey K, Pal M, Rout K C, Kunjattu H S, Das A, Mukherjee R, Kharul U K, Banerjee R. Selective molecular separation by interfacially crystallized covalent organic framework thin films. Journal of the American Chemical Society, 2017, 139(37): 13083–13091

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Matsumoto M, Valentino L, Stiehl G M, Balch H B, Corcos A R, Wang F, Ralph D C, Mariñas B J, Dichtel W R. Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films. Chem, 2018, 4(2): 308–317

    CAS  Article  Google Scholar 

  64. 64.

    Fan H, Gu J, Meng H, Knebel A, Caro J. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angewandte Chemie International Edition, 2018, 57(15): 4083–4087

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Fan H, Mundstock A, Feldhoff A, Knebel A, Gu J, Meng H, Caro J. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. Journal of the American Chemical Society, 2018, 140(32): 10094–10098

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Li Y, Wu Q, Guo X, Zhang M, Chen B, Wei G, Li X, Li X, Li S, Ma L. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nature Communications, 2020, 11: 599

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. 67.

    Li F, Qu Y, Zhao M. Efficient helium separation of graphitic carbon nitride membrane. Carbon, 2015, 95: 51–57

    Article  CAS  Google Scholar 

  68. 68.

    Liu Y, Xie D, Song M, Jiang L, Fu G, Liu L, Li J. Water desalination across multilayer graphitic carbon nitride membrane: insights from non-equilibrium molecular dynamics simulations. Carbon, 2018, 140: 131–138

    Article  CAS  Google Scholar 

  69. 69.

    Wang Y, Liu L, Xue J, Hou J, Ding L, Wang H. Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(6): 2181–2188

    CAS  Article  Google Scholar 

  70. 70.

    Wang Y, Wu N, Wang Y, Ma H, Zhang J, Xu L, Albolkany M K, Liu B. Graphite phase carbon nitride based membrane for selective permeation. Nature Communications, 2019, 10: 2500

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71.

    Cao K, Jiang Z, Zhang X, Zhang Y, Zhao J, Xing R, Yang S, Gao C, Pan F. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. Journal of Membrane Science, 2015, 490: 72–83

    CAS  Article  Google Scholar 

  72. 72.

    Wang Y, Ou R, Wang H, Xu T. Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane. Journal of Membrane Science, 2015, 475: 281–289

    CAS  Article  Google Scholar 

  73. 73.

    Chen J, Li Z, Wang C, Wu H, Liu G. Synthesis and characterization of g-C3N4 nanosheet modified polyamide nanofiltration membranes with good permeation and antifouling properties. RSC Advances, 2016, 6(113): 112148–112157

    CAS  Article  Google Scholar 

  74. 74.

    Tian Z, Wang S, Wang Y, Ma X, Cao K, Peng D, Wu X, Wu H, Jiang Z. Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity. Journal of Membrane Science, 2016, 514: 15–24

    CAS  Article  Google Scholar 

  75. 75.

    Zhao H, Chen S, Quan X, Yu H, Zhao H. Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment. Applied Catalysis B: Environmental, 2016, 194: 134–140

    CAS  Article  Google Scholar 

  76. 76.

    Gao X, Li Y, Yang X, Shang Y, Wang Y, Gao B, Wang Z. Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(37): 19875–19883

    CAS  Article  Google Scholar 

  77. 77.

    Wang J, Li M, Zhou S, Xue A, Zhang Y, Zhao Y, Zhong J, Zhang Q. Graphitic carbon nitride nanosheets embedded in poly(vinyl alcohol) nanocomposite membranes for ethanol dehydration via pervaporation. Separation and Purification Technology, 2017, 188: 24–37

    CAS  Article  Google Scholar 

  78. 78.

    Bunch J S, Verbridge S S, Alden J S, Zande A M, Parpia J M, Craighead H G, McEuen P L. Impermeable atomic membranes from graphene sheets. Nano Letters, 2008, 8: 2458–2462

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Cohen Tanugi D, Grossman J C. Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Sint K, Wang B, Král P. Selective ion passage through functionalized graphene nanopores. Journal of the American Chemical Society, 2008, 130(49): 16448–16449

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Jiang D, Cooper V R, Dai S. Porous graphene as the ultimate membrane for gas separation. Nano Letters, 2009, 9: 4019–4024

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Hauser A W, Schwerdtfeger P. Methane-selective nanoporous graphene membranes for gas purification. Physical Chemistry Chemical Physics, 2012, 14(38): 13292–13298

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Sun C, Boutilier M S, Au H, Poesio P, Bai B, Karnik R, Hadjiconstantinou N G. Mechanisms of molecular permeation through nanoporous graphene membranes. Langmuir, 2014, 30(2): 675–682

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Shan M, Xue Q, Jing N, Ling C, Zhang T, Yan Z, Zheng J. Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale, 2012, 4 (17): 5477–5482

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Liu H, Chen Z, Dai S, Jiang D. Selectivity trend of gas separation through nanoporous graphene. Journal of Solid State Chemistry, 2015, 224: 2–6

    CAS  Article  Google Scholar 

  86. 86.

    Nouri M, Ghasemzadeh K, Iulianelli A. Theoretical evaluation of graphene membrane performance for hydrogen separation using molecular dynamic simulation. Membranes, 2019, 9(9): 110

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  87. 87.

    Yuan Z, Misra R P, Rajan A G, Strano M S, Blankschtein D. Analytical prediction of gas permeation through graphene nanopores of varying sizes: understanding transitions across multiple transport regimes. ACS Nano, 2019, 13(10): 11809–11824

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Xu Y, Xu J, Yang C. Separation of diverse alkenes from C2-C4 alkanes through nanoporous graphene membranes via local size sieving. Journal of Membrane Science, 2019, 584: 227–235

    CAS  Article  Google Scholar 

  89. 89.

    Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A. Graphene as a subnanometre trans-electrode membrane. Nature, 2010, 467(7312): 190–193

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Fischbein M D, Drndić M. Electron beam nanosculpting of suspended graphene sheets. Applied Physics Letters, 2008, 93(11): 113107

    Article  CAS  Google Scholar 

  91. 91.

    Celebi K, Buchheim J, Wyss R M, Droudian A, Gasser P, Shorubalko I, Kye J, Lee C, Park H G. Ultimate permeation across atomically thin porous graphene. Science, 2014, 344(6181): 289–292

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Fan Z, Zhao Q, Li T, Yan J, Ren Y, Feng J, Wei T. Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon, 2012, 50(4): 1699–1703

    CAS  Article  Google Scholar 

  93. 93.

    O’Hern S C, Boutilier M S, Idrobo J C, Song Y, Kong J, Laoui T, Atieh M, Karnik R. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 2014, 14(3): 1234–1241

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Koenig S P, Wang L, Pellegrino J, Bunch J S. Selective molecular sieving through porous graphene. Nature Nanotechnology, 2012, 7 (11): 728–732

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M. Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 2015, 10(5): 459–464

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Sun C, Wen B, Bai B. Recent advances in nanoporous graphene membrane for gas separation and water purification. Science Bulletin, 2015, 60(21): 1807–1823

    CAS  Article  Google Scholar 

  97. 97.

    Liu G, Jin W, Xu N. Two-dimensional-material membranes: a new family of high-performance separation membranes. Angewandte Chemie International Edition, 2016, 55(43): 13384–13397

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Architecture of graphdiyne nanoscale films. Chemical Communications, 2010, 46(19): 3256–3258

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Blankenburg S, Bieri M, Fasel R, Mullen K, Pignedoli C A, Passerone D. Porous graphene as an atmospheric nanofilter. Small, 2010, 6(20): 2266–2271

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Kidambi P R, Nguyen G D, Zhang S, Chen Q, Kong J, Warner J, Li A P, Karnik R. Facile fabrication of large-area atomically thin membranes by direct synthesis of graphene with nanoscale porosity. Advanced Materials, 2018, 30(49): 1804977

    Article  CAS  Google Scholar 

  101. 101.

    Huang S, Dakhchoune M, Luo W, Oveisi E, He G, Rezaei M, Zhao J, Alexander D T L, Zuttel A, Strano M S, et al. Single-layer graphene membranes by crack-free transfer for gas mixture separation. Nature Communications, 2018, 9: 2632

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. 102.

    Wang S, Dai S, Jiang D. Continuously tunable pore size for gas separation via a bilayer nanoporous graphene membrane. ACS Applied Nano Materials, 2018, 2(1): 379–384

    Article  CAS  Google Scholar 

  103. 103.

    Zhao J, He G, Huang S, Villalobos L F, Dakhchoune M, Bassas H, Agrawal K V. Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation. Science Advances, 2019, 5(1): eaav1851

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Sun C, Zhu S, Liu M, Shen S, Bai B. Selective molecular sieving through a large graphene nanopore with surface charges. Journal of Physical Chemistry Letters, 2019, 10(22): 7188–7194

    CAS  Article  Google Scholar 

  105. 105.

    Choi K, Droudian A, Wyss R M, Schlichting K P, Park H G. Multifunctional wafer-scale graphene membranes for fast ultrafiltration and high permeation gas separation. Science Advances, 2018, 4(11): eaau0476

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Yang Y, Yang X, Liang L, Gao Y, Cheng H, Li X, Zou M, Ma R, Yuan Q, Duan X. Large-areagraphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 2019, 364(6445): 1057–1062

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Lin L C, Grossman J C. Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nature Communications, 2015, 6: 8335

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Wang P, Li W, Du C, Zheng X, Sun X, Yan Y, Zhang J. CO2/N2 separation via multilayer nanoslit graphene oxide membranes: molecular dynamics simulation study. Computational Materials Science, 2017, 140: 284–289

    CAS  Article  Google Scholar 

  109. 109.

    Zheng H, Zhu L, He D, Guo T, Li X, Chang X, Xue Q. Two-dimensional graphene oxide membrane for H2/CH4 separation: insights from molecular dynamics simulations. International Journal of Hydrogen Energy, 2017, 42(52): 30653–30660

    CAS  Article  Google Scholar 

  110. 110.

    Li W, Zhang L, Zhang X, Zhang M, Liu T, Chen S. Atomic insight into water and ion transport in 2D interlayer nanochannels of graphene oxide membranes: implication for desalination. Journal of Membrane Science, 2020, 596: 117744

    CAS  Article  Google Scholar 

  111. 111.

    Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012, 335(6067): 442–444

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 2017, 550(7676): 380–383

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Yeh C N, Raidongia K, Shao J, Yang Q H, Huang J. On the origin of the stability of graphene oxide membranes in water. Nature Chemistry, 2014, 7(2): 166–170

    PubMed  Article  CAS  Google Scholar 

  114. 114.

    Long Y, Wang K, Xiang G, Song K, Zhou G, Wang X. Molecule channels directed by cation-decorated graphene oxide nanosheets and their application as membrane reactors. Advanced Materials, 2017, 29(16): 1606093

    Article  CAS  Google Scholar 

  115. 115.

    Chen L, Huang L, Zhu J. Stitching graphene oxide sheets into a membrane at a liquid/liquid interface. Chemical Communications, 2014, 50(100): 15944–15947

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Liu J, Wang N, Yu L J, Karton A, Li W, Zhang W, Guo F, Hou L, Cheng Q, Jiang L, et al. Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation. Nature Communications, 2017, 8: 2011

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  117. 117.

    Nam Y T, Choi J, Kang K M, Kim D W, Jung H T. Enhanced stability of laminated graphene oxide membranes for nanofiltration via interstitial amide bonding. ACS Applied Materials & Interfaces, 2016, 8(40): 27376–27382

    CAS  Article  Google Scholar 

  118. 118.

    Hu M, Mi B. Enabling graphene oxide nanosheets as water separation membranes. Environmental Science & Technology, 2013, 47(8): 3715–3723

    CAS  Article  Google Scholar 

  119. 119.

    Hung W S, Tsou C H, De Guzman M, An Q F, Liu Y L, Zhang Y M, Hu C C, Lee K R, Lai J Y. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chemistry of Materials, 2014, 26(9): 2983–2990

    CAS  Article  Google Scholar 

  120. 120.

    Jia Z, Wang Y. Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(8): 4405–4412

    CAS  Article  Google Scholar 

  121. 121.

    Thebo K H, Qian X, Zhang Q, Chen L, Cheng H M, Ren W. Highly stable graphene-oxide-based membranes with superior permeability. Nature Communications, 2018, 9: 1486

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  122. 122.

    Liang F, Liu Q, Zhao J, Guan K, Mao Y, Liu G, Gu X, Jin W. Ultrafast water-selective permeation through graphene oxide membrane with water transport promoters. AIChE Journal. American Institute of Chemical Engineers, 2020, 66(2): e16812

    CAS  Article  Google Scholar 

  123. 123.

    Pan F, Li Y, Song Y, Wang M, Zhang Y, Yang H, Wang H, Jiang Z. Graphene oxide membranes with fixed interlayer distance via dual crosslinkers for efficient liquid molecular separations. Journal of Membrane Science, 2020, 595: 117486

    Article  CAS  Google Scholar 

  124. 124.

    Huang L, Li Y, Zhou Q, Yuan W, Shi G. Graphene oxide membranes with tunable semipermeability in organic solvents. Advanced Materials, 2015, 27(25): 3797–3802

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Huang L, Chen J, Gao T, Zhang M, Li Y, Dai L, Qu L, Shi G. Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration. Advanced Materials, 2016, 28(39): 8669–8674

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nature Communications, 2013, 4: 2979

    PubMed  Article  CAS  Google Scholar 

  127. 127.

    Wang S, Mahalingam D, Sutisna B, Nunes S P. 2D-dual-spacing channel membranes for high performance organic solvent nanofiltration. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(19): 11673–11682

    CAS  Article  Google Scholar 

  128. 128.

    Zhang M, Guan K, Shen J, Liu G, Fan Y, Jin W. Nanoparticles@rGO membrane enabling highly enhanced water permeability and structural stability with preserved selectivity. AIChE Journal. American Institute of Chemical Engineers, 2017, 63(11): 5054–5063

    CAS  Article  Google Scholar 

  129. 129.

    Dong L, Li M, Zhang S, Si X, Bai Y, Zhang C. NH2-Fe3O4-regulated graphene oxide membranes with well-defined laminar nanochannels for desalination of dye solutions. Desalination, 2020, 476: 114227

    CAS  Article  Google Scholar 

  130. 130.

    Wang W, Eftekhari E, Zhu G, Zhang X, Yan Z, Li Q. Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chemical Communications, 2014, 50(86): 13089–13092

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Liu Y, Yu Z, Peng Y, Shao L, Li X, Zeng H. A novelphotocatalytic self-cleaning TiO2 nanorods inserted graphene oxide-based nanofiltration membrane. Chemical Physics Letters, 2020, 749: 137424

    CAS  Article  Google Scholar 

  132. 132.

    Gao S J, Qin H, Liu P, Jin J. SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(12): 6649–6654

    CAS  Article  Google Scholar 

  133. 133.

    Han Y, Jiang Y, Gao C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Applied Materials & Interfaces, 2015, 7(15): 8147–8155

    CAS  Article  Google Scholar 

  134. 134.

    Wei Y, Zhu Y, Jiang Y. Photocatalytic self-cleaning carbon nitride nanotube intercalated reduced graphene oxide membranes for enhanced water purification. Chemical Engineering Journal, 2019, 356: 915–925

    CAS  Article  Google Scholar 

  135. 135.

    Han R, Wu P. High-performance graphene oxide nanofiltration membrane with continuous nanochannels prepared by the in situ oxidation of MXene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(11): 6475–6481

    CAS  Article  Google Scholar 

  136. 136.

    Yu J, Zhang Y, Chen J, Cui L, Jing W. Solvothermal-induced assembly of 2D-2D rGO-TiO2 nanocomposite for the construction of nanochannel membrane. Journal of Membrane Science, 2020, 600: 117870

    CAS  Article  Google Scholar 

  137. 137.

    Han Y, Xu Z, Gao C. Ultrathin graphene nanofiltration membrane for water purification. Advanced Functional Materials, 2013, 23 (29): 3693–3700

    CAS  Article  Google Scholar 

  138. 138.

    Zhang P, Gong J L, Zeng G M, Song B, Cao W, Liu H Y, Huan S Y, Peng P. Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure. Journal of Membrane Science, 2019, 574: 112–123

    CAS  Article  Google Scholar 

  139. 139.

    Cheng P, Chen Y, Gu Y H, Yan X, Lang W Z. Hybrid 2D WS2/GO nanofiltration membranes for finely molecular sieving. Journal of Membrane Science, 2019, 591: 117308

    CAS  Article  Google Scholar 

  140. 140.

    Wei S, Xie Y, Xing Y, Wang L, Ye H, Xiong X, Wang S, Han K. Two-dimensional graphene oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. Journal of Membrane Science, 2019, 582: 414–422

    CAS  Article  Google Scholar 

  141. 141.

    Liu T, Liu X, Graham N, Yu W, Sun K. Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. Journal of Membrane Science, 2020, 593: 117431

    CAS  Article  Google Scholar 

  142. 142.

    Kunimatsu M, Nakagawa K, Yoshioka T, Shintani T, Yasui T, Kamio E, Tsang S C E, Li J, Matsuyama H. Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. Journal of Membrane Science, 2020, 595: 117598

    CAS  Article  Google Scholar 

  143. 143.

    Morelos Gomez A, Cruz Silva R, Muramatsu H, Ortiz Medina J, Araki T, Fukuyo T, Tejima S, Takeuchi K, Hayashi T, Terrones M, et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nature Nanotechnology, 2017, 12 (11): 1083–1088

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Kim H W, Yoon H W, Yoon S M, Yoo B M, Ahn B K, Cho Y H, Shin H J, Yang H, Paik U, Kwon S, et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95

    CAS  PubMed  Article  Google Scholar 

  145. 145.

    Dou H, Xu M, Jiang B, Wen G, Zhao L, Wang B, Yu A, Bai Z, Sun Y, Zhang L, et al. Bioinspired graphene oxide membranes with dual transport mechanisms for precise molecular separation. Advanced Functional Materials, 2019, 29(50): 1905229

    CAS  Article  Google Scholar 

  146. 146.

    Wen Q, Jia P, Cao L, Li J, Quan D, Wang L, Zhang Y, Lu D, Jiang L, Guo W. Electric-field-induced ionic sieving at planar graphene oxide heterojunctions for miniaturized water desalination. Advanced Materials, 2020, 32(16): 1903954

    CAS  Article  Google Scholar 

  147. 147.

    Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Kim T W, Sahimi M, Tsotsis T T. Preparation of hydrotalcite thin films using an electrophoretic technique. Industrial & Engineering Chemistry Research, 2008, 47: 9127–9132

    CAS  Article  Google Scholar 

  149. 149.

    Kim T W, Sahimi M, Tsotsis T T. The preparation and characterization of hydrotalcite thin films. Industrial & Engineering Chemistry Research, 2009, 48: 5794–5801

    CAS  Article  Google Scholar 

  150. 150.

    Liu Y, Wang N, Cao Z, Caro J. Molecular sieving through interlayer galleries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(5): 1235–1238

    CAS  Google Scholar 

  151. 151.

    Liu Y, Wu H, Min L, Song S, Yang L, Ren Y, Wu Y, Zhao R, Wang H, Jiang Z. 2D layered double hydroxide membranes with intrinsic breathing effect toward CO2 for efficient carbon capture. Journal of Membrane Science, 2020, 598: 117663

    CAS  Article  Google Scholar 

  152. 152.

    Liu Y, Wang N, Diestel L, Steinbach F, Caro J. MOF membrane synthesis in the confined space of a vertically aligned LDH network. Chemical Communications, 2014, 50(32): 4225–4227

    CAS  PubMed  Article  Google Scholar 

  153. 153.

    Liu Y, Wang N, Pan J H, Steinbach F, Caro J. In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates. Journal of the American Chemical Society, 2014, 136 (41): 14353–14356

    CAS  PubMed  Article  Google Scholar 

  154. 154.

    Liu Y, Peng Y, Wang N, Li Y, Pan J H, Yang W, Caro J. Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors. ChemSusChem, 2015, 8(21): 3582–3586

    CAS  PubMed  Article  Google Scholar 

  155. 155.

    Fan H, Peng M, Strauss I, Mundstock A, Meng H, Caro J. High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation. Journal of the American Chemical Society, 2020, 142(15): 6872–6877

    CAS  PubMed  Article  Google Scholar 

  156. 156.

    Lu P, Liang S, Qiu L, Gao Y, Wang Q. Thin film nanocomposite forward osmosis membranes based on layered double hydroxide nanoparticles blended substrates. Journal of Membrane Science, 2016, 504: 196–205

    CAS  Article  Google Scholar 

  157. 157.

    Lu P, Liang S, Zhou T, Mei X, Zhang Y, Zhang C, Umar A, Wang Q. Layered double hydroxide/graphene oxide hybrid incorporated polysulfone substrate for thin-film nanocomposite forward osmosis membranes. RSC Advances, 2016, 6(61): 56599–56609

    CAS  Article  Google Scholar 

  158. 158.

    Zhao Y, Li N, Yuan F, Zhang H, Xia S. Preparation and characterization of hydrophilic and antifouling poly(ether sulfone) ultrafiltration membranes modified with Zn-Al layered double hydroxides. Journal of Applied Polymer Science, 2016, 133(39): 43988–43998

    Article  CAS  Google Scholar 

  159. 159.

    Arefi Oskoui S, Khataee A, Vatanpour V. Effect of solvent type on the physicochemical properties and performance of NLDH/PVDF nanocomposite ultrafiltration membranes. Separation and Purification Technology, 2017, 184: 97–118

    CAS  Article  Google Scholar 

  160. 160.

    Wang N, Huang Z, Li X, Li J, Ji S, An Q F. Tuning molecular sieving channels of layered double hydroxides membrane with direct intercalation of amino acids. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(35): 17148–17155

    CAS  Google Scholar 

  161. 161.

    Ang E H, Velioğlu S, Chew J W. Tunable affinity separation enables ultrafast solvent permeation through layered double hydroxide membranes. Journal of Membrane Science, 2019, 591: 117318

    CAS  Article  Google Scholar 

  162. 162.

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23 (37): 4248–4253

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  163. 163.

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 2014, 26(7): 992–1005

    CAS  PubMed  Article  Google Scholar 

  164. 164.

    Ren C E, Hatzell K B, Alhabeb M, Ling Z, Mahmoud K A, Gogotsi Y. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. Journal of Physical Chemistry Letters, 2015, 6(20): 4026–4031

    CAS  Article  Google Scholar 

  165. 165.

    Li L, Zhang T, Duan Y, Wei Y, Dong C, Ding L, Qiao Z, Wang H. Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11734–11742

    CAS  Google Scholar 

  166. 166.

    Wu X, Cui X, Wu W, Wang J, Li Y, Jiang Z. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes. Angewandte Chemie International Edition, 2019, 58(51): 18524–18529

    CAS  PubMed  Article  Google Scholar 

  167. 167.

    Xing Y, Akonkwa G, Liu Z, Ye H, Han K. Crumpled two-dimensional Ti3C2Tx MXene lamellar membranes for solvent permeation and separation. ACS Applied Nano Materials, 2020, 3 (2): 1526–1534

    CAS  Article  Google Scholar 

  168. 168.

    Ding L, Li L, Liu Y, Wu Y, Lu Z, Deng J, Wei Y, Caro J, Wang H. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nature Sustainability, 2020, 3: 296–302

    Article  Google Scholar 

  169. 169.

    Lu Z, Wei Y, Deng J, Ding L, Li Z K, Wang H. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano, 2019, 13(9): 10535–10544

    CAS  PubMed  Article  Google Scholar 

  170. 170.

    Wu X, Hao L, Zhang J, Zhang X, Wang J, Liu J. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. Journal of Membrane Science, 2016, 515: 175–188

    CAS  Article  Google Scholar 

  171. 171.

    Hao L, Zhang H, Wu X, Zhang J, Wang J, Li Y. Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport. Composites. Part A, Applied Science and Manufacturing, 2017, 100: 139–149

    CAS  Article  Google Scholar 

  172. 172.

    Shamsabadi A A, Isfahani A P, Salestan S K, Rahimpour A, Ghalei B, Sivaniah E, Soroush M. Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2Tx MXene Nanosheets. ACS Applied Materials & Interfaces, 2020, 12(3): 3984–3992

    CAS  Article  Google Scholar 

  173. 173.

    Gao L, Li C, Huang W, Mei S, Lin H, Ou Q, Zhang Y, Guo J, Zhang F, Xu S, et al. MXene/polymer membranes: synthesis, properties, and emerging applications. Chemistry of Materials, 2020, 32(5): 1703–1747

    CAS  Article  Google Scholar 

  174. 174.

    Heiranian M, Farimani A B, Aluru N R. Water desalination with a single-layer MoS2 nanopore. Nature Communications, 2015, 6: 8616

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  175. 175.

    Kou J, Yao J, Wu L, Zhou X, Lu H, Wu F, Fan J. Nanoporous two-dimensional MoS2 membranes for fast saline solution purification. Physical Chemistry Chemical Physics, 2016, 18(32): 22210–22216

    CAS  PubMed  Article  Google Scholar 

  176. 176.

    Li W, Yang Y, Weber J K, Zhang G, Zhou R. Tunable, strain-controlled nanoporous MoS2 filter for water desalination. ACS Nano, 2016, 10(2): 1829–1835

    CAS  PubMed  Article  Google Scholar 

  177. 177.

    Sun L, Huang H, Peng X. Laminar MoS2 membranes for molecule separation. Chemical Communications, 2013, 49(91): 10718–10720

    CAS  PubMed  Article  Google Scholar 

  178. 178.

    Sun L, Ying Y, Huang H, Song Z, Mao Y, Xu Z, Peng X. Ultrafast molecule separation through layered WS2 nanosheet membranes. ACS Nano, 2014, 8(6): 6304–6311

    CAS  PubMed  Article  Google Scholar 

  179. 179.

    Hirunpinyopas W, Prestat E, Worrall S D, Haigh S J, Dryfe R A W, Bissett M A. Desalination and nanofiltration through functionalized laminar MoS2 Membranes. ACS Nano, 2017, 11(11): 11082–11090

    CAS  PubMed  Article  Google Scholar 

  180. 180.

    Ang E H, Chew J W. Two-dimensional transition-metal dichalco-genide-based membrane for ultrafast solvent permeation. Chemistry of Materials, 2019, 31(24): 10002–10007

    CAS  Article  Google Scholar 

  181. 181.

    Ries L, Petit E, Michel T, Diogo C C, Gervais C, Salameh C, Bechelany M, Balme S, Miele P, Onofrio N, et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nature Materials, 2019, 18(10): 1112–1117

    CAS  PubMed  Article  Google Scholar 

  182. 182.

    Hu W, Cui X, Xiang L, Gong L, Zhang L, Gao M, Wang W, Zhang J, Liu F, Yan B, et al. Tannic acid modified MoS2 nanosheet membranes with superior water flux and ion/dye rejection. Journal of Colloid and Interface Science, 2020, 560: 177–185

    CAS  PubMed  Article  Google Scholar 

  183. 183.

    Wang D, Wang Z, Wang L, Hu L, Jin J. Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation. Nanoscale, 2015, 7(42): 17649–17652

    CAS  PubMed  Article  Google Scholar 

  184. 184.

    Achari A, Sahana S, Eswaramoorthy M. High performance MoS2 membranes: effects of thermally driven phase transition on CO2 separation efficiency. Energy & Environmental Science, 2016, 9 (4): 1224–1228

    CAS  Article  Google Scholar 

  185. 185.

    Shen Y, Wang H, Zhang X, Zhang Y. MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method. ACS Applied Materials & Interfaces, 2016, 8(35): 23371–23378

    CAS  Article  Google Scholar 

  186. 186.

    Chen D, Ying W, Guo Y, Ying Y, Peng X. Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane. ACS Applied Materials & Interfaces, 2017, 9(50): 44251–44257

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding from the National Natural Science Foundation of China (Grant Nos. 22022805, 22078107 and 51621001) and Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2017A030306002).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yanying Wei or Haihui Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wei, Y., Fan, J. et al. Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications. Front. Chem. Sci. Eng. (2021). https://doi.org/10.1007/s11705-020-2016-8

Download citation

Keywords

  • membrane separation
  • 2D membranes
  • 2D materials
  • nanosheet