Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites


Poor interfacial adhesion and dispersity severely obstruct the continued development of carbon nanotube (CNT)-reinforced epoxy (EP) for potential applications. Herein, hierarchical CNT nanohybrids using nickel phyllosilicate (Ni-PS) as surface decorations (CNT@Ni-PS) were synthesized, and the nanocomposites derived from varied mass fractions of EP and CNT@Ni-PS were prepared. The morphological structures, tribological performances, curing behaviors and thermal properties of EP/CNT@Ni-PS nanocomposites were carefully investigated. Results show that hierarchical CNT nanohybrids with homogeneous dispersion and well-bonded interfacial adhesion in the matrix are successfully obtained, presenting significantly improved thermal and tribological properties. Moreover, analysis on cure kinetics proves the excellent promotion of CNT@Ni-PS on the non-isothermal curing process, lowering the curing energy barrier steadily.

This is a preview of subscription content, access via your institution.


  1. 1.

    Liu S, Chevali V S, Xu Z, Hui D, Wang H. A review of extending performance of epoxy resins using carbon nanomaterials. Composites. Part B, Engineering, 2018, 136: 197–214

    CAS  Article  Google Scholar 

  2. 2.

    Wang H, Sun L, Wang R, Yan L, Zhu Y, Wang C, Wang E. Dopamine modification of multiwalled carbon nanotubes and its influences on the thermal, mechanical, and tribological properties of epoxy resin composites. Polymer Composites, 2017, 38(1): 116–125

    CAS  Article  Google Scholar 

  3. 3.

    Esposito L H, Ramos J A, Kortaberria G. Dispersion of carbon nanotubes in nanostructured epoxy systems for coating application. Progress in Organic Coatings, 2014, 77(9): 1452–1458

    CAS  Article  Google Scholar 

  4. 4.

    Li A, Li W, Ling Y, Gan W, Brady M A, Wang C. Effects of silica-coated carbon nanotubes on the curing behavior and properties of epoxy composites. RSC Advances, 2016, 6(28): 23318–23326

    CAS  Article  Google Scholar 

  5. 5.

    Zakaria M R, Akil H M, Kudus M H A, Othman M B H. Compressive properties and thermal stability of hybrid carbon nanotube-alumina filled epoxy nanocomposites. Composites. Part B, Engineering, 2016, 91: 235–242

    CAS  Article  Google Scholar 

  6. 6.

    Li X, Chen B, Jia Y, Li X, Yang J, Li C, Yan F. Enhanced tribological properties of epoxy-based lubricating coatings using carbon nanotubes-ZnS hybrid. Surface and Coatings Technology, 2018, 344: 154–162

    CAS  Article  Google Scholar 

  7. 7.

    Zhou K, Liu J, Shi Y, Jiang S, Wang D, Hu Y, Gui Z. MoS2 nanolayers grown on carbon nanotubes: an advanced reinforcement for epoxy composites. ACS Applied Materials & Interfaces, 2015, 7(11): 6070–6081

    CAS  Article  Google Scholar 

  8. 8.

    Hou Y, Hu W, Liu L, Gui Z, Hu Y. In-situ synthesized CNTs/Bi2Se3 nanocomposites by a facile wet chemical method and its application for enhancing fire safety of epoxy resin. Composites Science and Technology, 2018, 157: 185–194

    CAS  Article  Google Scholar 

  9. 9.

    Bian Z, Kawi S. Preparation, characterization and catalytic application of phyllosilicate: a review. Catalysis Today, 2020, 339: 3–23

    CAS  Article  Google Scholar 

  10. 10.

    Nie S, Jin D, Xu Y, Han C, Dong X, Yang J. Effect of a flower-like nickel phyllosilicate-containing iron on the thermal stability and flame retardancy of epoxy resin. Journal of Materials Research and Technology, 2020, 9(5): 10189–10197

    CAS  Article  Google Scholar 

  11. 11.

    Yang J, Liu Y, Xu Y, Nie S, Li Z. Property investigations of epoxy composites filled by nickel phyllosilicate-decorated graphene oxide. Journal of Materials Science, 2020, 55(24): 10593–10610

    CAS  Article  Google Scholar 

  12. 12.

    Qu J, Li W, Cao C Y, Yin X J, Zhao L, Bai J, Qin Z, Song W G. Metal silicate nanotubes with nanostructured walls as superb adsorbents for uranyl ions and lead ions in water. Journal of Materials Chemistry, 2012, 22(33): 17222–17226

    CAS  Article  Google Scholar 

  13. 13.

    Grassi G, Scala A, Piperno A, Iannazzo D, Lanza M, Milone C, Pistone A, Galvagno S. A facile and ecofriendly functionalization of multiwalled carbon nanotubes by an old mesoionic compound. Chemical Communications, 2012, 48(54): 6836–6838

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Burattin P, Che M, Louis C. Characterization of the Ni(II) phase formed on silica upon deposition-precipitation. Journal of Physical Chemistry B, 1997, 101(36): 7060–7074

    CAS  Article  Google Scholar 

  15. 15.

    Zhang X, Zhao D, Luan D, Bi C. Fabrication and mechanical properties of multiwalled carbon nanotube/nanonickel reinforced epoxy resin composites. Applied Physics. A, Materials Science & Processing, 2016, 122(12): 1056

    Article  CAS  Google Scholar 

  16. 16.

    Li H B, Yu M H, Wang F X, Liu P, Liang Y, Xiao J, Wang C X, Tong Y X, Yang G W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nature Communications, 2013, 4: 1894

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Kermarec M, Carriat J, Burattin P, Che M, Decarreau A. FTIR identification of the supported phases produced in the preparation of silica-supported nickel catalysts. Journal of Physical Chemistry, 1994, 98(46): 12008–12017

    Article  Google Scholar 

  18. 18.

    Wu Y, Chang G, Zhao Y, Zhang Y. Preparation of hollow nickel silicate nanospheres for separation of His-tagged proteins. Dalton Transactions (Cambridge, England), 2014, 43(2): 779–783

    CAS  Article  Google Scholar 

  19. 19.

    Da Fonseca M G, Silva C R, Barone J S, Airoldi C. Layered hybrid nickel phyllosilicates and reactivity of the gallery space. Journal of Materials Chemistry, 2000, 10(3): 789–795

    CAS  Article  Google Scholar 

  20. 20.

    Gui C, Hao S, Liu Y, Qu J, Yang C, Yu Y, Wang Q, Yu Z. Carbon nanotube@layered nickel silicate coaxial nanocables as excellent anode materials for lithium and sodium storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(32): 16551–16559

    CAS  Article  Google Scholar 

  21. 21.

    Chabrol K, Gressier M, Pebere N, Menu M J, Martin F, Bonino J P, Marichal C, Brendle J. Functionalization of synthetic talc-like phyllosilicates by alkoxyorganosilane grafting. Journal of Materials Chemistry, 2010, 20(43): 9695–9706

    CAS  Article  Google Scholar 

  22. 22.

    Kim K, Kim Y, Nam J, Baeck S H, Park D W, Shim S E. Mechanical properties of silica-coated multi-walled carbon nanotube/epoxy composites. Polymer (Korea), 2016, 40(1): 117–123

    CAS  Article  Google Scholar 

  23. 23.

    Liu J, Yuen R K K, Hong N, Hu Y. The influence of mesoporous SiO2-graphene hybrid improved the flame retardancy of epoxy resins. Polymers for Advanced Technologies, 2018, 29(5): 1478–1486

    CAS  Article  Google Scholar 

  24. 24.

    Chen X, Wang L, Shi J, Shi H, Liu Y. Effect of barium sulfate nanoparticles on mechanical properties and crystallization behaviour of HDPE. Polymers & Polymer Composites, 2010, 18(3): 145–152

    Article  Google Scholar 

  25. 25.

    Baptista R, Mendao A, Rodrigues F, Figueiredo-Pina C G, Guedes M, Marat-Mendes R. Effect of high graphite filler contents on the mechanical and tribological failure behavior of epoxy matrix composites. Theoretical and Applied Fracture Mechanics, 2016, 85: 113–124

    CAS  Article  Google Scholar 

  26. 26.

    Yi H, Chen C, Zhong F, Xu Z. Preparation of aluminum oxide-coated carbon nanotubes and the properties of composite epoxy coatings research. High Performance Polymers, 2014, 26(3): 255–264

    Article  CAS  Google Scholar 

  27. 27.

    Yuan J, Zhang Z, Yang M, Guo F, Men X, Liu W. Surface modification of hybrid-fabric composites with amino silane and polydopamine for enhanced mechanical and tribological behaviors. Tribology International, 2017, 107: 10–17

    CAS  Article  Google Scholar 

  28. 28.

    Wang Q H, Zhang X R, Pei X Q. Study on the friction and wear behavior of basalt fabric composites filled with graphite and nano-SiO2. Materials & Design, 2010, 31(3): 1403–1409

    CAS  Article  Google Scholar 

  29. 29.

    Pawlak Z, Kaldonski T, Pai R, Bayraktare E, Oloyede A. A comparative study on the tribological behaviour of hexagonal boron nitride (H-BN) as lubricating micro-particles—an additive in porous sliding bearings for a car clutch. Wear, 2009, 267(5): 1198–1202

    CAS  Article  Google Scholar 

  30. 30.

    Yu J, Zhao W, Wu Y, Wang D, Feng R. Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers. Applied Surface Science, 2018, 434: 1311–1320

    CAS  Article  Google Scholar 

  31. 31.

    Zhao Z, Ji J. Synthesis and tribological behaviors of epoxy/phosphazene-microspheres coatings under dry sliding condition. Advanced Engineering Materials, 2014, 16(8): 988–995

    CAS  Article  Google Scholar 

  32. 32.

    Choi J H, Song H J, Jung J, Yu J W, You N, Goh M. Effect of crosslink density on thermal conductivity of epoxy/carbon nanotube nanocomposites. Journal of Applied Polymer Science, 2017, 134(4): 44253

    Article  CAS  Google Scholar 

  33. 33.

    Dasari A, Yu Z Z, Mai Y W. Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Materials Science and Engineering R Reports, 2009, 63(2): 31–80

    Article  CAS  Google Scholar 

  34. 34.

    Zhou T, Wang X, Liu X, Xiong D. Influence of multi-walled carbon nanotubes on the cure behavior of epoxy-imidazole system. Carbon, 2009, 47(4): 1112–1118

    CAS  Article  Google Scholar 

  35. 35.

    Singh A K, Panda B P, Mohanty S, Nayak S K, Gupta M K. Study on metal decorated oxidized multiwalled carbon nanotube (MWCNT)-epoxy adhesive for thermal conductivity applications. Journal of Materials Science Materials in Electronics, 2017, 28(12): 8908–8920

    CAS  Article  Google Scholar 

  36. 36.

    Liu Y F, Zhao M, Shen S G, Gao J G. Curing kinetics of tetrabromo-bisphenol—A epoxy resin with diaminodiphenyl methane. Acta Physico-Chimica Sinica, 1998, 14(10): 927–931

    CAS  Article  Google Scholar 

  37. 37.

    Gillham J K. Formation and properties of thermosetting and high Tg polymeric materials. Polymer Engineering and Science, 1986, 26 (20): 1429–1433

    CAS  Article  Google Scholar 

  38. 38.

    Yarahmadi E, Didehban K, Sari M G, Saeb M R, Shabanian M, Aryanasab F, Zarrintaj P, Paran S M R, Mozafari M, Rallini M, et al. Development and curing potential of epoxy/starch-functionalized graphene oxide nanocomposite coatings. Progress in Organic Coatings, 2018, 119: 194–202

    CAS  Article  Google Scholar 

  39. 39.

    Kissinger H E. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1957, 29(11): 1702–1706

    CAS  Article  Google Scholar 

  40. 40.

    Vyazovkin S, Mititelu A, Sbirrazzuoli N. Kinetics of epoxy-amine curing accompanied by the formation of liquid crystalline structure. Macromolecular Rapid Communications, 2003, 24(18): 1060–1065

    CAS  Article  Google Scholar 

  41. 41.

    Jain R, Choudhary V, Narula A. Studies on the curing kinetics of epoxy resins using mixture of nadic/or maleic anhydride and 4, 4′-diaminodiphenyl sulfone. Journal of Thermal Analysis and Calorimetry, 2007, 90(2): 495–501

    CAS  Article  Google Scholar 

  42. 42.

    Wan J, Gan B, Li C, Molina-Aldareguia J, Li Z, Wang X, Wang D Y. A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(43): 21907–21921

    CAS  Article  Google Scholar 

  43. 43.

    Friedman H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia, 1964, 6(1): 183–195

    Google Scholar 

  44. 44.

    Starink M. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochimica Acta, 2003, 404(1–2): 163–176

    CAS  Article  Google Scholar 

  45. 45.

    Zhang J, Dong H, Tong L, Meng L, Chen Y, Yue G. Investigation of curing kinetics of sodium carboxymethyl cellulose/epoxy resin system by differential scanning calorimetry. Thermochimica Acta, 2012, 549: 63–68

    CAS  Article  Google Scholar 

  46. 46.

    Lu L, Xia L, Zengheng H, Xingyue S, Yi Z, Pan L. Investigation on cure kinetics of epoxy resin containing carbon nanotubes modified with hyper-branched polyester. RSC Advances, 2018, 8(52): 29830–29839

    CAS  Article  Google Scholar 

  47. 47.

    Xu W, Wang X, Liu Y, Li W, Chen R. Improving fire safety of epoxy filled with graphene hybrid incorporated with zeolitic imidazolate framework/layered double hydroxide. Polymer Degradation & Stability, 2018, 154: 27–36

    CAS  Article  Google Scholar 

  48. 48.

    Che Y, Sun Z, Zhan R, Wang S, Zhou S, Huang J. Effects of graphene oxide sheets-zirconia spheres nanohybrids on mechanical, thermal and tribological performances of epoxy composites. Ceramics International, 2018, 44(15): 18067–18077

    CAS  Article  Google Scholar 

  49. 49.

    Kim H, Abdala A A, Macosko C W. Graphene/polymer nanocomposites. Macromolecules, 2010, 43(16): 6515–6530

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 51775001), Natural Science Foundation of Anhui Province (Grant No. 1908085J20), University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2019-027) and the Leading Talents Project in Colleges and Universities of Anhui Province.

Author information



Corresponding authors

Correspondence to Jinian Yang or Chang Su.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Xu, Y., Su, C. et al. Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites. Front. Chem. Sci. Eng. (2021).

Download citation


  • nickel phyllosilicate
  • surface decoration
  • tribological property
  • curing kinetics
  • thermal performance