Recovery of free volume in PIM-1 membranes through alcohol vapor treatment

Abstract

Physical aging is currently a major obstacle for the commercialization of PIM-1 membranes for gas separation applications. A well-known approach to reversing physical aging effects of PIM-1 membranes at laboratory scale is soaking them in lower alcohols, such as methanol and ethanol. However, this procedure does not seem applicable at industrial level, and other strategies must be investigated. In this work, a regeneration method with alcohol vapors (ethanol or methanol) was developed to recover permeability of aged PIM-1 membranes, in comparison with the conventional soaking-in-liquid approach. The gas permeability and separation performance, before and post the regeneration methods, were assessed using a binary mixture of CO2 and CH4 (1:1, v:v). Our results show that an 8-hour methanol vapor treatment was sufficient to recover the original gas permeability, reaching a CO2 permeability > 7000 barrer.

References

  1. 1.

    Low Z X, Budd P M, McKeown N B, Patterson D A. Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers. Chemical Reviews, 2018, 118(12): 5871–5911

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Budd P M, Ghanem B S, Makhseed S, McKeown N B, Msayib K J, Tattershall C E. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chemical Communications, 2004, (2): 230–231

    Google Scholar 

  3. 3.

    Budd P M, McKeown N B, Fritsch D. Polymers of intrinsic microporosity (PIMs): high free volume polymers for membrane applications. Macromolecular Symposia, 2006, 245–246(1): 403–405

    Article  CAS  Google Scholar 

  4. 4.

    Kim S, Lee Y M. Rigid and microporous polymers for gas separationmembranes. Progress in Polymer Science, 2015, 43: 1–32

    CAS  Article  Google Scholar 

  5. 5.

    Du N, Cin M M D, Pinnau I, Nicalek A, Robertson G P, Guiver M D. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation. Macromolecular Rapid Communications, 2011, 32(8): 631–636

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Mason C R, Maynard-Atem L, Heard K W J, Satilmis B, Budd P M, Friess K, Lanc MBernardo P, Clarizia G, Jansen J C. Enhancement of CO2 affinity in a polymer of intrinsic microporosity by amine modification. Macromolecules, 2014, 47(3): 1021–1029

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Bakhtin D S, Kulikov L A, Legkov S A, Khotimskiy V S, Levin I S, Borisov I L, Maksimov A L, Volkov V V, Karakhanov E A, Volkov A V. Aging of thin-film composite membranes based on PTMSP loaded with porous aromatic frameworks. Journal of Membrane Science, 2018, 554: 211–220

    CAS  Article  Google Scholar 

  8. 8.

    Harms S, Rätzke K, Faupel F, Chaukura N, Budd P M, Egger W, Ravelli L. Aging and free volume in a polymer of intrinsic microporosity (PIM-1). Journal of Adhesion, 2012, 88(7): 608–619

    CAS  Article  Google Scholar 

  9. 9.

    Tiwari R R, Jin J, Freeman B D, Paul D R. Physical aging, CO2 sorption and plasticization in thin films of polymer with intrinsic microporosity (PIM-1). Journal of Membrane Science, 2017, 537: 362–371

    CAS  Article  Google Scholar 

  10. 10.

    Nagai K, Nakagawa T. Effects of aging on the gas permeability and solubility in poly(1-trimethylsilyl-1-propyne) membranes synthesized with various catalysts. Journal of Membrane Science, 1995, 105(3): 261–272

    CAS  Article  Google Scholar 

  11. 11.

    Jue M L, McKay C S, McCool B A, Finn M G, Lively R P. Effect of nonsolvent treatments on the microstructure of PIM-1. Macro-molecules, 2015, 48(16): 5780–5790

    CAS  Article  Google Scholar 

  12. 12.

    Swaidan R, Ghanem B, Litwiller E, Pinnau I. Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity. Macromolecules, 2015, 48 (18): 6553–6561

    CAS  Article  Google Scholar 

  13. 13.

    Budd P M, McKeown N B, Ghanem B S, Msayib K J, Fritsch D, Starannikova L, Belov N, Sanfirova O, Yampolskii Y, Shantarovich V. Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1. Journal of Membrane Science, 2008, 325(2): 851–860

    CAS  Article  Google Scholar 

  14. 14.

    Bushell A F, Attfield M P, Mason C R, Budd P M, Yampolskii Y, Starannikova L, Rebrov A, Bazzarelli F, Bernardo P, Carolus Jansen J, Lane M, Friess K, Shantarovich V, Gustov V, Isaeva V. Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. Journal of Membrane Science, 2013, 427: 48–62

    CAS  Article  Google Scholar 

  15. 15.

    Carta M, Malpass-Evans R, Croad M, Rogan Y, Jansen J C, Bernardo P, Bazzarelli F, McKeown N B. An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339 (6117): 303–307

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Carta M, Croad M, Malpass-Evans R, Jansen J C, Bernardo P, Clarizia G, Friess K, Lanč M, McKeown N B. Triptycene induced enhancement of membrane gas selectivity for microporous Tröger’s base polymers. Advanced Materials, 2014, 26(21): 3526–3531

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Rose I, Carta M, Malpass-Evans R, Ferrari M C, Bernardo P, Clarizia G, Jansen J C, McKeown N B. Highly permeable benzotriptycene-based polymer of intrinsic microporosity. ACS Macro Letters, 2015, 4(9): 912–915

    CAS  Article  Google Scholar 

  18. 18.

    Ma X, Mukaddam M, Pinnau I. Bifunctionalized intrinsically microporous polyimides with simultaneously enhanced gas permeability and selectivity. Macromolecular Rapid Communications, 2016, 37(11): 900–904

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Song Q, Cao S, Pritchard R H, Ghalei B, Al-Muhtaseb S A, Terentjev E M, Cheetham A K, Sivaniah E. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Nature Communications, 2014, 5(1): 4813

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  20. 20.

    Li F Y, Chung T S. Physical aging, high temperature and water vapor permeation studies of UV-rearranged PIM-1 membranes for advanced hydrogen purification and production. International Journal of Hydrogen Energy, 2013, 38(23): 9786–9793

    CAS  Article  Google Scholar 

  21. 21.

    Alberto M, Bhavsar R, Luque-Alled J M, Vijayaraghavan A, Budd P M, Gorgojo P. Impeded physical aging in PIM-1 membranes containing graphene-like fillers. Journal of Membrane Science, 2018, 563: 513–520

    CAS  Article  Google Scholar 

  22. 22.

    Bhavsar R S, Mitra T, Adams D J, Cooper A I, Budd P M. Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation. Journal of Membrane Science, 2018, 564: 878–886

    CAS  Article  Google Scholar 

  23. 23.

    Yong W F, Kwek K H A, Liao K S, Chung T S. Suppression of aging and plasticization in highly permeable polymers. Polymer, 2015, 77: 377–386

    CAS  Article  Google Scholar 

  24. 24.

    Horn N R, Paul D R. Carbon dioxide plasticization of thin glassy polymer films. Polymer, 2011, 52(24): 5587–5594

    CAS  Article  Google Scholar 

  25. 25.

    McDermott A G, Budd P M, McKeown N B, Colina C M, Runt J. Physical aging of polymers of intrinsic microporosity: a SAXS/ WAXS study. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(30): 11742–11752

    CAS  Article  Google Scholar 

  26. 26.

    Hill A J, Pas S J, Bastow T J, Burgar M I, Nagai K, Toy L G, Freeman B D. Influence of methanol conditioning and physical aging on carbon spin-lattice relaxation times of poly(1-trimethylsi-lyl-1-propyne). Journal of Membrane Science, 2004, 243(1): 37–44

    CAS  Article  Google Scholar 

  27. 27.

    Razali M, Didaskalou C, Kim J F, Babaei M, Drioli E, Lee Y M, Szekely G. Exploring and exploiting the effect of solvent treatment in membrane separations. ACS Applied Materials & Interfaces, 2017, 9(12): 11279–11289

    CAS  Article  Google Scholar 

  28. 28.

    Jimenez Solomon M F, Bhole Y, Livingston A G. High flux hydrophobic membranes for organic solvent nanofiltration (OSN)— interfacial polymerization, surface modification and solvent activation. Journal of Membrane Science, 2013, 434: 193–203

    CAS  Article  Google Scholar 

  29. 29.

    Gorgojo P, Jimenez-Solomon M F, Livingston A G. Polyamide thin film composite membranes on cross-linked polyimide supports: improvement of RO performance via activating solvent. Desalination, 2014, 344: 181–188

    CAS  Article  Google Scholar 

  30. 30.

    Zhao Y, Yuan Q. Effect ofmembrane pretreatment on performance of solvent resistant nanofiltration membranes in methanol solutions. Journal of Membrane Science, 2006, 280(1): 195–201

    CAS  Article  Google Scholar 

  31. 31.

    Shukla R, Cheryan M. Performance of ultrafiltration membranes in ethanol-water solutions: effect of membrane conditioning. Journal of Membrane Science, 2002, 198(1): 75–85

    CAS  Article  Google Scholar 

  32. 32.

    Penha F M, Rezzadori K, Proner M C, Zanatta V, Zin G, Tondo D W, Vladimir de Oliveira J, Petrus J C C, Di Luccio M. Influence of different solvent and time of pre-treatment on commercial polymeric ultrafiltration membranes applied to non-aqueous solvent permeation. European Polymer Journal, 2015, 66: 492–501

    CAS  Article  Google Scholar 

  33. 33.

    Nguyen Q T, Favre E, Ping Z H, Néel J. Clustering of solvents in membranes and its influence on membrane transport properties. Journal of Membrane Science, 1996, 113(1): 137–150

    CAS  Article  Google Scholar 

  34. 34.

    Du N, Song J, Robertson G P, Pinnau I, Guiver M D. Linear high molecular weight ladder polymer via fast polycondensation of 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethylspirobisindane with 1,4-dicyanotetrafluorobenzene. Macromolecular Rapid Communications, 2008, 29(10): 783–788

    CAS  Article  Google Scholar 

  35. 35.

    Satilmis B, Budd P M. Base-catalysed hydrolysis of PIM-1: amide versus carboxylate formation. RSC Advances, 2014, 4(94): 52189–52198

    CAS  Article  Google Scholar 

  36. 36.

    Hao L, Liao K S, Chung T S. Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(33): 17273–17281

    CAS  Article  Google Scholar 

  37. 37.

    Zhang L, Fang W, Jiang J. Effects of residual solvent on membrane structure and gas permeation in a polymer of intrinsic microporosity: insight from atomistic simulation. Journal of Physical Chemistry C, 2011, 115(22): 11233–11239

    CAS  Article  Google Scholar 

  38. 38.

    Mitra T, Bhavsar R S, Adams D J, Budd P M, Cooper A I. PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers. Chemical Communications, 2016, 52(32): 5581–5584

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Abd Halim N S, Wirzal M D H, Bilad M R, Md Nordin NAH, Adi Putra Z, Sambudi N S, Mohd Yusoff A R. Improving performance of electrospun nylon 6,6 nanofiber membrane for produced water filtration via solvent vapor treatment. Polymers, 2019, 11(12): 2117

    CAS  PubMed Central  Article  Google Scholar 

  40. 40.

    Rianjanu A, Kusumaatmaja A, Suyono E A, Triyana K. Solvent vapor treatment improves mechanical strength of electrospun polyvinyl alcohol nanofibers. Heliyon, 2018, 4(4): e00592

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Brunetti A, Cersosimo M, Kim J S, Dong G, Fontananova E, Lee Y M, Drioli E, Barbieri G. Thermally rearranged mixed matrix membranes for CO2 separation: an aging study. International Journal of Greenhouse Gas Control, 2017, 61: 16–26

    CAS  Article  Google Scholar 

  42. 42.

    Bernardo P, Bazzarelli E, Tasselli F, Clarizia G, Mason C R, Maynard-Atem L, Budd P M, Lanc M, Pilnacek K, Vopicka O, Friess K, Fritsch D, Yampolskii Y P, Shantarovich V, Jansen J C. Effect of physical aging on the gas transport and sorption in PIM-1 membranes. Polymer, 2017, 113: 283–294

    CAS  Article  Google Scholar 

  43. 43.

    Scholes C A, Kanehashi S. Polymer of intrinsic microporosity (PIM-1) membranes treated with supercritical CO2. Membranes, 2019, 9(3): 1–12

    Article  CAS  Google Scholar 

  44. 44.

    Adymkanov S V, Yampol’skii Y P, Polyakov A M, Budd P M, Reynolds K J, McKeown N B, Msayib K J. Pervaporation of alcohols through highly permeable PIM-1 polymer films. Polymer Science, Series A, 2008, 50(4): 444–450

    Article  Google Scholar 

  45. 45.

    Robeson L M. The upper bound revisited. Journal of Membrane Science, 2008, 320(1): 390–400

    CAS  Article  Google Scholar 

  46. 46.

    Robeson L M. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62 (2): 165–185

    CAS  Article  Google Scholar 

  47. 47.

    Comesaña-Gándara B, Chen J, Bezzu C G, Carta M, Rose I, Ferrari M C, Esposito E, Fuoco A, Jansen J C, McKeown N B. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy & Environmental Science, 2019, 12 (9): 2733–2740

    Article  Google Scholar 

Download references

Acknowledgements

Faiz Almansour is grateful to the Department of Research & Development, Saudi Aramco for funding and supporting his Ph.D. studies. M. Alberto is grateful to EPSRC for funding under the research grant number EP/S032258/1 and R. Bhavsar to EPSRC under grant number EP/M001342/1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patricia Gorgojo.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Almansour, F., Alberto, M., Bhavsar, R.S. et al. Recovery of free volume in PIM-1 membranes through alcohol vapor treatment. Front. Chem. Sci. Eng. (2021). https://doi.org/10.1007/s11705-020-2001-2

Download citation

Keywords

  • polymer of intrinsic microporosity (PIM)
  • PIM-1
  • physical aging
  • gas separation
  • vapor-phase regeneration