Abstract
Physical aging is currently a major obstacle for the commercialization of PIM-1 membranes for gas separation applications. A well-known approach to reversing physical aging effects of PIM-1 membranes at laboratory scale is soaking them in lower alcohols, such as methanol and ethanol. However, this procedure does not seem applicable at industrial level, and other strategies must be investigated. In this work, a regeneration method with alcohol vapors (ethanol or methanol) was developed to recover permeability of aged PIM-1 membranes, in comparison with the conventional soaking-in-liquid approach. The gas permeability and separation performance, before and post the regeneration methods, were assessed using a binary mixture of CO2 and CH4 (1:1, v:v). Our results show that an 8-hour methanol vapor treatment was sufficient to recover the original gas permeability, reaching a CO2 permeability > 7000 barrer.

References
- 1.
Low Z X, Budd P M, McKeown N B, Patterson D A. Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers. Chemical Reviews, 2018, 118(12): 5871–5911
- 2.
Budd P M, Ghanem B S, Makhseed S, McKeown N B, Msayib K J, Tattershall C E. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chemical Communications, 2004, (2): 230–231
- 3.
Budd P M, McKeown N B, Fritsch D. Polymers of intrinsic microporosity (PIMs): high free volume polymers for membrane applications. Macromolecular Symposia, 2006, 245–246(1): 403–405
- 4.
Kim S, Lee Y M. Rigid and microporous polymers for gas separationmembranes. Progress in Polymer Science, 2015, 43: 1–32
- 5.
Du N, Cin M M D, Pinnau I, Nicalek A, Robertson G P, Guiver M D. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation. Macromolecular Rapid Communications, 2011, 32(8): 631–636
- 6.
Mason C R, Maynard-Atem L, Heard K W J, Satilmis B, Budd P M, Friess K, Lanc MBernardo P, Clarizia G, Jansen J C. Enhancement of CO2 affinity in a polymer of intrinsic microporosity by amine modification. Macromolecules, 2014, 47(3): 1021–1029
- 7.
Bakhtin D S, Kulikov L A, Legkov S A, Khotimskiy V S, Levin I S, Borisov I L, Maksimov A L, Volkov V V, Karakhanov E A, Volkov A V. Aging of thin-film composite membranes based on PTMSP loaded with porous aromatic frameworks. Journal of Membrane Science, 2018, 554: 211–220
- 8.
Harms S, Rätzke K, Faupel F, Chaukura N, Budd P M, Egger W, Ravelli L. Aging and free volume in a polymer of intrinsic microporosity (PIM-1). Journal of Adhesion, 2012, 88(7): 608–619
- 9.
Tiwari R R, Jin J, Freeman B D, Paul D R. Physical aging, CO2 sorption and plasticization in thin films of polymer with intrinsic microporosity (PIM-1). Journal of Membrane Science, 2017, 537: 362–371
- 10.
Nagai K, Nakagawa T. Effects of aging on the gas permeability and solubility in poly(1-trimethylsilyl-1-propyne) membranes synthesized with various catalysts. Journal of Membrane Science, 1995, 105(3): 261–272
- 11.
Jue M L, McKay C S, McCool B A, Finn M G, Lively R P. Effect of nonsolvent treatments on the microstructure of PIM-1. Macro-molecules, 2015, 48(16): 5780–5790
- 12.
Swaidan R, Ghanem B, Litwiller E, Pinnau I. Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity. Macromolecules, 2015, 48 (18): 6553–6561
- 13.
Budd P M, McKeown N B, Ghanem B S, Msayib K J, Fritsch D, Starannikova L, Belov N, Sanfirova O, Yampolskii Y, Shantarovich V. Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1. Journal of Membrane Science, 2008, 325(2): 851–860
- 14.
Bushell A F, Attfield M P, Mason C R, Budd P M, Yampolskii Y, Starannikova L, Rebrov A, Bazzarelli F, Bernardo P, Carolus Jansen J, Lane M, Friess K, Shantarovich V, Gustov V, Isaeva V. Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. Journal of Membrane Science, 2013, 427: 48–62
- 15.
Carta M, Malpass-Evans R, Croad M, Rogan Y, Jansen J C, Bernardo P, Bazzarelli F, McKeown N B. An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339 (6117): 303–307
- 16.
Carta M, Croad M, Malpass-Evans R, Jansen J C, Bernardo P, Clarizia G, Friess K, Lanč M, McKeown N B. Triptycene induced enhancement of membrane gas selectivity for microporous Tröger’s base polymers. Advanced Materials, 2014, 26(21): 3526–3531
- 17.
Rose I, Carta M, Malpass-Evans R, Ferrari M C, Bernardo P, Clarizia G, Jansen J C, McKeown N B. Highly permeable benzotriptycene-based polymer of intrinsic microporosity. ACS Macro Letters, 2015, 4(9): 912–915
- 18.
Ma X, Mukaddam M, Pinnau I. Bifunctionalized intrinsically microporous polyimides with simultaneously enhanced gas permeability and selectivity. Macromolecular Rapid Communications, 2016, 37(11): 900–904
- 19.
Song Q, Cao S, Pritchard R H, Ghalei B, Al-Muhtaseb S A, Terentjev E M, Cheetham A K, Sivaniah E. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Nature Communications, 2014, 5(1): 4813
- 20.
Li F Y, Chung T S. Physical aging, high temperature and water vapor permeation studies of UV-rearranged PIM-1 membranes for advanced hydrogen purification and production. International Journal of Hydrogen Energy, 2013, 38(23): 9786–9793
- 21.
Alberto M, Bhavsar R, Luque-Alled J M, Vijayaraghavan A, Budd P M, Gorgojo P. Impeded physical aging in PIM-1 membranes containing graphene-like fillers. Journal of Membrane Science, 2018, 563: 513–520
- 22.
Bhavsar R S, Mitra T, Adams D J, Cooper A I, Budd P M. Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation. Journal of Membrane Science, 2018, 564: 878–886
- 23.
Yong W F, Kwek K H A, Liao K S, Chung T S. Suppression of aging and plasticization in highly permeable polymers. Polymer, 2015, 77: 377–386
- 24.
Horn N R, Paul D R. Carbon dioxide plasticization of thin glassy polymer films. Polymer, 2011, 52(24): 5587–5594
- 25.
McDermott A G, Budd P M, McKeown N B, Colina C M, Runt J. Physical aging of polymers of intrinsic microporosity: a SAXS/ WAXS study. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(30): 11742–11752
- 26.
Hill A J, Pas S J, Bastow T J, Burgar M I, Nagai K, Toy L G, Freeman B D. Influence of methanol conditioning and physical aging on carbon spin-lattice relaxation times of poly(1-trimethylsi-lyl-1-propyne). Journal of Membrane Science, 2004, 243(1): 37–44
- 27.
Razali M, Didaskalou C, Kim J F, Babaei M, Drioli E, Lee Y M, Szekely G. Exploring and exploiting the effect of solvent treatment in membrane separations. ACS Applied Materials & Interfaces, 2017, 9(12): 11279–11289
- 28.
Jimenez Solomon M F, Bhole Y, Livingston A G. High flux hydrophobic membranes for organic solvent nanofiltration (OSN)— interfacial polymerization, surface modification and solvent activation. Journal of Membrane Science, 2013, 434: 193–203
- 29.
Gorgojo P, Jimenez-Solomon M F, Livingston A G. Polyamide thin film composite membranes on cross-linked polyimide supports: improvement of RO performance via activating solvent. Desalination, 2014, 344: 181–188
- 30.
Zhao Y, Yuan Q. Effect ofmembrane pretreatment on performance of solvent resistant nanofiltration membranes in methanol solutions. Journal of Membrane Science, 2006, 280(1): 195–201
- 31.
Shukla R, Cheryan M. Performance of ultrafiltration membranes in ethanol-water solutions: effect of membrane conditioning. Journal of Membrane Science, 2002, 198(1): 75–85
- 32.
Penha F M, Rezzadori K, Proner M C, Zanatta V, Zin G, Tondo D W, Vladimir de Oliveira J, Petrus J C C, Di Luccio M. Influence of different solvent and time of pre-treatment on commercial polymeric ultrafiltration membranes applied to non-aqueous solvent permeation. European Polymer Journal, 2015, 66: 492–501
- 33.
Nguyen Q T, Favre E, Ping Z H, Néel J. Clustering of solvents in membranes and its influence on membrane transport properties. Journal of Membrane Science, 1996, 113(1): 137–150
- 34.
Du N, Song J, Robertson G P, Pinnau I, Guiver M D. Linear high molecular weight ladder polymer via fast polycondensation of 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethylspirobisindane with 1,4-dicyanotetrafluorobenzene. Macromolecular Rapid Communications, 2008, 29(10): 783–788
- 35.
Satilmis B, Budd P M. Base-catalysed hydrolysis of PIM-1: amide versus carboxylate formation. RSC Advances, 2014, 4(94): 52189–52198
- 36.
Hao L, Liao K S, Chung T S. Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(33): 17273–17281
- 37.
Zhang L, Fang W, Jiang J. Effects of residual solvent on membrane structure and gas permeation in a polymer of intrinsic microporosity: insight from atomistic simulation. Journal of Physical Chemistry C, 2011, 115(22): 11233–11239
- 38.
Mitra T, Bhavsar R S, Adams D J, Budd P M, Cooper A I. PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers. Chemical Communications, 2016, 52(32): 5581–5584
- 39.
Abd Halim N S, Wirzal M D H, Bilad M R, Md Nordin NAH, Adi Putra Z, Sambudi N S, Mohd Yusoff A R. Improving performance of electrospun nylon 6,6 nanofiber membrane for produced water filtration via solvent vapor treatment. Polymers, 2019, 11(12): 2117
- 40.
Rianjanu A, Kusumaatmaja A, Suyono E A, Triyana K. Solvent vapor treatment improves mechanical strength of electrospun polyvinyl alcohol nanofibers. Heliyon, 2018, 4(4): e00592
- 41.
Brunetti A, Cersosimo M, Kim J S, Dong G, Fontananova E, Lee Y M, Drioli E, Barbieri G. Thermally rearranged mixed matrix membranes for CO2 separation: an aging study. International Journal of Greenhouse Gas Control, 2017, 61: 16–26
- 42.
Bernardo P, Bazzarelli E, Tasselli F, Clarizia G, Mason C R, Maynard-Atem L, Budd P M, Lanc M, Pilnacek K, Vopicka O, Friess K, Fritsch D, Yampolskii Y P, Shantarovich V, Jansen J C. Effect of physical aging on the gas transport and sorption in PIM-1 membranes. Polymer, 2017, 113: 283–294
- 43.
Scholes C A, Kanehashi S. Polymer of intrinsic microporosity (PIM-1) membranes treated with supercritical CO2. Membranes, 2019, 9(3): 1–12
- 44.
Adymkanov S V, Yampol’skii Y P, Polyakov A M, Budd P M, Reynolds K J, McKeown N B, Msayib K J. Pervaporation of alcohols through highly permeable PIM-1 polymer films. Polymer Science, Series A, 2008, 50(4): 444–450
- 45.
Robeson L M. The upper bound revisited. Journal of Membrane Science, 2008, 320(1): 390–400
- 46.
Robeson L M. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62 (2): 165–185
- 47.
Comesaña-Gándara B, Chen J, Bezzu C G, Carta M, Rose I, Ferrari M C, Esposito E, Fuoco A, Jansen J C, McKeown N B. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy & Environmental Science, 2019, 12 (9): 2733–2740
Acknowledgements
Faiz Almansour is grateful to the Department of Research & Development, Saudi Aramco for funding and supporting his Ph.D. studies. M. Alberto is grateful to EPSRC for funding under the research grant number EP/S032258/1 and R. Bhavsar to EPSRC under grant number EP/M001342/1.
Author information
Affiliations
Corresponding author
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Almansour, F., Alberto, M., Bhavsar, R.S. et al. Recovery of free volume in PIM-1 membranes through alcohol vapor treatment. Front. Chem. Sci. Eng. (2021). https://doi.org/10.1007/s11705-020-2001-2
Received:
Accepted:
Published:
Keywords
- polymer of intrinsic microporosity (PIM)
- PIM-1
- physical aging
- gas separation
- vapor-phase regeneration