Kinetics and mechanism of nitrobenzene degradation by hydroxyl radicals-based ozonation process enhanced by high gravity technology

Abstract

This study investigated the indirect oxidation of nitrobenzene (NB) by hydroxyl radicals (·OH) in a rotating packed bed (RPB) using competitive kinetics method with p-nitrochlorobenzene as a reference compound. The rate constants of NB with ·OH are calculated to be between (1.465±0.113) × 109 L/(mol·s) and (2.497±0.192) × 109 L/(mol·s). The experimental data are fitted by the modified Arrhenius equation, where the activation energy is 4877.74 J/mol, the order of NB concentration, rotation speed, and initial pH is 0.2425, 0.1400 and 0.0167, respectively. The ozonation process of NB could be enhanced by RPB, which is especially effective for highly concentrated NB-containing waste-water under alkaline conditions. The high gravity technology can accelerate ozone mass transfer and self-decomposition of ozone to produce more ·OH, resulting in an increase in the indirect oxidation rate of NB by ·OH and consequently effective degradation of NB in waste-water.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Liu H T, Sui M H, Yuan B J, Wang J Y, Lv Y N. Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals. Chemical Engineering Journal, 2019, 357: 140–149

    Article  CAS  Google Scholar 

  2. 2.

    Palmisano G, Loddo V, Augugliaro V, Palmisano L, Yurdakal S. Photocatalytic oxidation of nitrobenzene and phenylamine: pathways and kinetics. AIChE Journal. American Institute of Chemical Engineers, 2010, 53: 961–968

    Article  CAS  Google Scholar 

  3. 3.

    Jiao W Z, Yang P Z, Gao W Q, Qiao J J, Liu Y Z. Apparent kinetics of the ozone oxidation of nitrobenzene in aqueous solution enhanced by high gravity technology. Chemical Engineering and Processing-Process Intensification, 2019, 146: 107690

    CAS  Article  Google Scholar 

  4. 4.

    Jiao W Z, Qin Y J, Luo S, He Z, Feng Z R, Liu Y Z. Simultaneous formation of nanoscale zero-valent iron and degradation of nitrobenzene in wastewater in an impinging stream-rotating packed bed reactor. Chemical Engineering Journal, 2017, 321: 564–571

    CAS  Article  Google Scholar 

  5. 5.

    Duan H T, Liu Y, Yin X H, Bai J F, Qi J. Degradation of nitrobenzene by Fenton-like reaction in a H2O2/schwertmannite system. Chemical Engineering Journal, 2016, 283: 873–879

    CAS  Article  Google Scholar 

  6. 6.

    Yang P Z, Luo S, Liu Y Z, Jiao W Z. Degradation of nitrobenzene wastewater in an acidic environment by Ti(IV)/H2O2/O3 in a rotating packed bed. Environmental Science and Pollution Research International, 2018, 25: 25060–25070

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Elshafei G M S, Yehia F Z, Dimitry O H, Badawi A M, Eshaq G. Ultrasonic assisted-Fenton-like degradation of nitrobenzene at neutral pH using nanosized oxides of Fe and Cu. Ultrasonics Sonochemistry, 2014, 21: 1358–1365

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Wu J, Su T M, Jiang Y X, Xie X L, Qin Z Z, Ji H B. Catalytic ozonation of cinnamaldehyde to benzaldehyde over CaO: experiments and intrinsic kinetics. AIChE Journal. American Institute of Chemical Engineers, 2017, 63: 4403–4417

    CAS  Article  Google Scholar 

  9. 9.

    Martins R C, Cardoso M, Dantas R F, Sans C, Esplugas S, QuintaFerreira R M. Catalytic studies for the abatement of emerging contaminants by ozonation. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2015, 90: 1611–1618

    CAS  Article  Google Scholar 

  10. 10.

    Huber M M, Canonica S, Park G Y, Von Gunten U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science & Technology, 2013, 37: 1016–1024

    Article  CAS  Google Scholar 

  11. 11.

    Sun X M, Wu C Y, Zhou Y X, Han W. Using DOM fraction method to investigate the mechanism of catalytic ozonation for real wastewater. Chemical Engineering Journal, 2019, 369: 100–108

    CAS  Article  Google Scholar 

  12. 12.

    Chiang Y P, Liang Y Y, Chang C N, Chao A C. Differentiating ozone direct and indirect reactions on decomposition of humic substances. Chemosphere, 2006, 65: 2395–2400

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Beltrán F J, Encinar J M, Alonso M A. Nitroaromatic hydrocarbon ozonation in water. 1. Single ozonation. Industrial & Engineering Chemistry Research, 1998, 37: 25–31

    Article  Google Scholar 

  14. 14.

    Hoigné J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water—I: non-dissociating organic compounds. Water Research, 1983, 17(2): 173–183

    Article  Google Scholar 

  15. 15.

    Jiao W Z, Luo S, He Z, Liu Y Z. Applications of high gravity technologies for wastewater treatment: a review. Chemical Engineering Journal, 2017, 313: 912–927

    CAS  Article  Google Scholar 

  16. 16.

    Burns J R, Ramshaw C. Process intensification: visual study of liquid maldistribution in rotating packed beds. Chemical Engineering Science, 1996, 51: 1347–1352

    CAS  Article  Google Scholar 

  17. 17.

    Chen Y H, Chang C Y, Su W L, Chiu C Y, Yu Y H, Chiang P C, Chang C F, Shie J L, Chiou C S. Chiang S I M. Ozonation of CI Reactive Black 5 using rotating packed bed and stirred tank reactor. Journal of Chemical Technology and Biotechnology, 2015, 80: 68–75

    Article  CAS  Google Scholar 

  18. 18.

    Chiang C Y, Chen Y S, Liang M S, Lin F Y, Tai C Y D, Liu H S. Absorption of ethanol into water and glycerol/water solution in a rotating packed bed. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40: 418–423

    CAS  Article  Google Scholar 

  19. 19.

    Luo Y, Chu G W, Zhou H K, Zhao Z Q, Dudukovic M P, Chen J F. Gas-liquid effective interfacial area in a rotating packed bed. Industrial & Engineering Chemistry Research, 2012, 51: 16320–16352

    CAS  Article  Google Scholar 

  20. 20.

    Zeng Z Q, Zhou H K, Li X, Arowo M, Sun B C, Chen J F, Chu G W, Shao L. Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed. Chemical Engineering Journal, 2013, 229: 404–411

    CAS  Article  Google Scholar 

  21. 21.

    Jiao W Z, Liu Y Z, Liu W L, Li J, Shao F, Wang C R. Degradation of nitrobenzene-containing wastewater with O3 and H2O2 by high gravity technology. China Petroleum Processing and Petrochemical Technology, 2013, 15(1): 85–94

    CAS  Google Scholar 

  22. 22.

    Guo L, Jiao W Z, Liu Y Z, Xu C C, Liu W L, Li J. Treatment of nitrobenzene-containing wastewater using different combined processes with ozone. Chinese Journal Energetic Materials, 2014, 22(5): 702–708

    CAS  Google Scholar 

  23. 23.

    Yang P Z, Luo S, Liu H Y, Jiao W Z, Liu Y Z. Aqueous ozone decomposition kinetics in a rotating packed bed. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96: 11–17

    CAS  Article  Google Scholar 

  24. 24.

    Jung Y, Hong E, Kwon M, Kang J W. A kinetic study of ozone decay and bromine formation in saltwater ozonation: effect of O3 dose, salinity, pH, and temperature. Chemical Engineering Journal, 2017, 312: 30–38

    CAS  Article  Google Scholar 

  25. 25.

    Chu W, Ma C W. Quantitative prediction of direct and indirect dye ozonation kinetics. Water Research, 2000, 34: 3153–3160

    CAS  Article  Google Scholar 

  26. 26.

    Zhao Y, Yu G, Chen S Y, Zhang S Y, Wang B, Huang J, Deng S B, Wang Y J. Ozonation of antidepressant fluoxetine and its metabolite product norfluoxetine: kinetics, intermediates and toxicity. Chemical Engineering Journal, 2017, 316: 951–963

    CAS  Article  Google Scholar 

  27. 27.

    Chen W R, Wu C, Elovitz M S, Linden K G, Suffet I H. Reactions of thiocarbamate, triazine and urea herbicides, RDX and benzenes on EPA Contaminant Candidate List with ozone and with hydroxyl radicals. Water Research, 2008, 42(1–2): 137–144

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Hoigné J. Inter-calibration of ·OH radical sources and water quality parameters. Water Science and Technology, 1997, 35: 1–8

    Article  Google Scholar 

  29. 29.

    Leitner N K V, Roshani B. Kinetic of benzotriazole oxidation by ozone and hydroxyl radical. Water Research, 2010, 44(6): 2058–2066

    Article  CAS  Google Scholar 

  30. 30.

    El Najjar N H, Touffet A, Deborde M, Journel R, Leitner N K V. Levofloxacin oxidation by ozone and hydroxyl radicals: kinetic study, transformation products and toxicity. Chemosphere, 2013, 93(4): 604–611

    Article  CAS  Google Scholar 

  31. 31.

    Wang Z Y, Shao Y S, Gao N Y, An A. Degradation kinetic of dibutyl phthalate (DBP) by sulfate radical-and hydroxyl radical-based advanced oxidation process in UV/persulfate system. Separation and Purification Technology, 2018, 195: 92–100

    CAS  Article  Google Scholar 

  32. 32.

    Shen J M, Chen Z L, Xu Z Z, Li X Y, Xu B B, Qi F. Kinetics and mechanism of degradation of p-chloronitrobenzene in water by ozonation. Journal of Hazardous Materials, 2008, 152: 1325–1331

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Li B Z, Xu X, Zhu L. Ozonation ofchloronitrobenzenes in aqueous solution: kinetics and mechanism. Journal of Chemical Technology and Biotechnology, 2009, 84: 167–175

    CAS  Article  Google Scholar 

  34. 34.

    Wang F, Wang Y, Ji M. Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration. Journal of Hazardous Materials, 2005, 123: 145–150

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Ko C H, Guan C Y, Lu P J, Chern J M. Ozonation of guaiacol solution in a rotating packed bed. Chemical Engineering Journal, 2011, 171: 1045–1052

    CAS  Article  Google Scholar 

  36. 36.

    Zeng Z Q, Zou H K, Li X, Sun B C, Chen J F, Shao L. Ozonation of phenol with O3/Fe(II) in acidic environment in a rotating packed bed. Industrial & Engineering Chemistry Research, 2012, 51: 10509–10516

    CAS  Article  Google Scholar 

  37. 37.

    Zhao W R, Wu Z B, Wang D H. Ozone direct oxidation kinetics of cationic red X-GRL in aqueous solution. Journal of Hazardous Materials, 2006, 137(3): 1859–1865

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Zhao W R, Liu F F, Yang Y, Tan M, Zhao D Y. Ozonation of cationic red X-GRL in aqueous solution: kinetics and modeling. Journal of Hazardous Materials, 2004, 57: 1189–1199

    CAS  Google Scholar 

  39. 39.

    Matthews R W, Sangster D F. Measurement by benzoate radiolytic decarboxylation of relative rate constants for hydroxyl radical reactions. Journal of Physical Chemistry, 1965, 69(6): 1938–1946

    CAS  Article  Google Scholar 

  40. 40.

    Chen Y H, Chang C Y, Su W L, Chen C C, Chiu C Y, Yu Y H, Chiang P C, Chiang S I M. Modeling ozone contacting process in a rotating packed bed. Industrial & Engineering Chemistry Research, 2004, 43(1): 228–236

    Article  CAS  Google Scholar 

  41. 41.

    Hoigné J, Bader H. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Research, 1976, 10(5): 377–386

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Specialized Research Fund for Sanjin Scholars Program of Shanxi Province (No. 201707), Key Research & Development Plan of Shanxi Province (No. 201903D321059), Shanxi Scholarship Council of China (No. HGKY2019071), and Transformation and Cultivation Projects of Scientific and Technological Achievements of Higher Education Institutions for Shanxi Province (No. 2020CG040).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Weizhou Jiao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiao, W., Shao, S., Yang, P. et al. Kinetics and mechanism of nitrobenzene degradation by hydroxyl radicals-based ozonation process enhanced by high gravity technology. Front. Chem. Sci. Eng. (2021). https://doi.org/10.1007/s11705-020-1998-6

Download citation

Keywords

  • high gravity technology
  • hydroxyl radicals
  • nitrobenzene
  • reaction kinetics