The use of carbon nanomaterials in membrane distillation membranes: a review

Abstract

Membrane distillation (MD) is a thermal-based separation technique with the potential to treat a wide range of water types for various applications and industries. Certain challenges remain however, which prevent it from becoming commercially widespread including moderate permeate flux, decline in separation performance over time due to pore wetting and high thermal energy requirements. Nevertheless, its attractive characteristics such as high rejection (ca. 100%) of nonvolatile species, its ability to treat highly saline solutions under low operating pressures (typically atmospheric) as well as its ability to operate at low temperatures, enabling waste-heat integration, continue to drive research interests globally. Of particular interest is the class of carbon-based nanomaterials which includes graphene and carbon nanotubes, whose wide range of properties have been exploited in an attempt to overcome the technical challenges that MD faces. These low dimensional materials exhibit properties such as high specific surface area, high strength, tuneable hydrophobicity, enhanced vapour transport, high thermal and electrical conductivity and others. Their use in MD has resulted in improved membrane performance characteristics like increased permeability and reduced fouling propensity. They have also enabled novel membrane capabilities such as in-situ fouling detection and localised heat generation. In this review we provide a brief introduction to MD and describe key membrane characteristics and fabrication methods. We then give an account of the various uses of carbon nanomaterials for MD applications, focussing on polymeric membrane systems. Future research directions based on the findings are also suggested.

References

  1. 1.

    Lawson K W, Lloyd D R. Membrane distillation. Journal of Membrane Science, 1997, 124(1): 1–25

    CAS  Article  Google Scholar 

  2. 2.

    Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: a comprehensive review. Desalination, 2012, 287: 2–18

    CAS  Article  Google Scholar 

  3. 3.

    Banat F A, Simandl J. Removal of benzene traces from contaminated water by vacuum membrane distillation. Chemical Engineering Science, 1996, 51(8): 1257–1265

    CAS  Article  Google Scholar 

  4. 4.

    Nthunya L N, Gutierrez L, Derese S, Nxumalo E N, Verliefde A R, Mamba B B, Mhlanga S D. A review of nanoparticle-enhanced membrane distillation membranes: membrane synthesis and applications in water treatment. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2019, 94(9): 2757–2771

    CAS  Article  Google Scholar 

  5. 5.

    Schofield R, Fane A, Fell C. Heat and mass transfer in membrane distillation. Journal of Membrane Science, 1987, 33(3): 299–313

    CAS  Article  Google Scholar 

  6. 6.

    Baghbanzadeh M, Rana D, Lan C Q, Matsuura T. Zero thermal input membrane distillation, a zero-waste and sustainable solution for freshwater shortage. Applied Energy, 2017, 187: 910–928

    Article  Google Scholar 

  7. 7.

    Al-Obaidani S, Curcio E, Macedonio F, Di Profio G, Al-Hinai H, Drioli E. Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science, 2008, 323(1): 85–98

    CAS  Article  Google Scholar 

  8. 8.

    Meindersma G, Guijt C, De Haan A. Desalination and water recycling by air gap membrane distillation. Desalination, 2006, 187(1–3): 291–301

    CAS  Article  Google Scholar 

  9. 9.

    Khayet M. Solar desalination by membrane distillation: dispersion in energy consumption analysis and water production costs (a review). Desalination, 2013, 308: 89–101

    CAS  Article  Google Scholar 

  10. 10.

    Martinetti C R, Childress A E, Cath T Y. High recovery of concentrated RO brines using forward osmosis and membrane distillation. Journal of Membrane Science, 2009, 331(1–2): 31–39

    CAS  Article  Google Scholar 

  11. 11.

    Naidu G, Jeong S, Choi Y, Vigneswaran S. Membrane distillation for wastewater reverse osmosis concentrate treatment with water reuse potential. Journal of Membrane Science, 2017, 524: 565–575

    CAS  Article  Google Scholar 

  12. 12.

    Lee S, Choi J, Park Y G, Shon H, Ahn C H, Kim S H. Hybrid desalination processes for beneficial use of reverse osmosis brine: current status and future prospects. Desalination, 2018, 454: 104–111

    Article  CAS  Google Scholar 

  13. 13.

    Yan Z, Yang H, Qu F, Yu H, Liang H, Li G, Ma J. Reverse osmosis brine treatment using direct contact membrane distillation: effects of feed temperature and velocity. Desalination, 2017, 423: 149–156

    CAS  Article  Google Scholar 

  14. 14.

    Drioli E, Wu Y, Calabro V. Membrane distillataion in the treatment of aqueous solutions. Journal of Membrane Science, 1987, 33(3): 277–284

    CAS  Article  Google Scholar 

  15. 15.

    Wu Y, Drioli E. The behaviour of membrane distillation of concentrated aqueous solution. Water Treatment, 1989, 4: 399–415

    CAS  Google Scholar 

  16. 16.

    Drioli E, Di Profio G, Curcio E. Progress in membrane crystallization. Current Opinion in Chemical Engineering, 2012, 1(2): 178–182

    CAS  Article  Google Scholar 

  17. 17.

    Quist-Jensen C A, Ali A, Mondal S, Macedonio F, Drioli E. A study of membrane distillation and crystallization for lithium recovery from high-concentrated aqueous solutions. Journal of Membrane Science, 2016, 505: 167–173

    CAS  Article  Google Scholar 

  18. 18.

    Quist-Jensen C A, Sørensen J M, Svenstrup A, Scarpa L, Carlsen T S, Jensen H C, Wybrandt L, Christensen M L. Membrane crystallization for phosphorus recovery and ammonia stripping from reject water from sludge dewatering process. Desalination, 2018, 440: 156–160

    CAS  Article  Google Scholar 

  19. 19.

    Zarebska A, Nieto D R, Christensen K V, Norddahl B. Ammonia recovery from agricultural wastes by membrane distillation: fouling characterization and mechanism. Water Research, 2014, 56: 1–10

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Cui Z, Zhang Y, Li X, Wang X, Drioli E, Wang Z, Zhao S. Optimization of novel composite membranes for water and mineral recovery by vacuum membrane distillation. Desalination, 2018, 440: 39–47

    CAS  Article  Google Scholar 

  21. 21.

    Leaper S, Abdel-Karim A, Gad-Allah T A, Gorgojo P. Air-gap membrane distillation as a one-step process for textile wastewater treatment. Chemical Engineering Journal, 2018, 360: 1330–1340

    Article  CAS  Google Scholar 

  22. 22.

    Ramlow H, Machado R A F, Marangoni C. Direct contact membrane distillation for textile wastewater treatment: a state of the art review. Water Science and Technology, 2017, 76(10): 2565–2579

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Wu Y, Kong Y, Liu J, Zhang J, Xu J. An experimental study on membrane distillation-crystallization for treating waste water in taurine production. Desalination, 1991, 80(2–3): 235–242

    CAS  Article  Google Scholar 

  24. 24.

    Quist-Jensen C A, Macedonio F, Drioli E. Membrane technology for water production in agriculture: desalination and wastewater reuse. Desalination, 2015, 364: 17–32

    CAS  Article  Google Scholar 

  25. 25.

    Xie M, Shon H K, Gray S R, Elimelech M. Membrane-based processes for wastewater nutrient recovery: technology, challenges, and future direction. Water Research, 2016, 89: 210–221

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Cath T Y, Adams D, Childress A E. Membrane contactor processes for wastewater reclamation in space. II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater. Journal of Membrane Science, 2005, 257(1–2): 111–119

    CAS  Article  Google Scholar 

  27. 27.

    Kim H C, Shin J, Won S, Lee J Y, Maeng S K, Song K G. Membrane distillation combined with an anaerobic moving bed biofilm reactor for treating municipal wastewater. Water Research, 2015, 71: 97–106

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Jiao B, Cassano A, Drioli E. Recent advances on membrane processes for the concentration of fruit juices: a review. Journal of Food Engineering, 2004, 63(3): 303–324

    Article  Google Scholar 

  29. 29.

    Andrés-Mañas J A, Ruiz-Aguirre A, Acién F G, Zaragoza G. Performance increase of membrane distillation pilot scale modules operating in vacuum-enhanced air-gap configuration. Desalination, 2020, 475: 114202

    Article  CAS  Google Scholar 

  30. 30.

    Khayet M, Godino P, Mengual J I. Nature of flow on sweeping gas membrane distillation. Journal of Membrane Science, 2000, 170 (2): 243–255

    CAS  Article  Google Scholar 

  31. 31.

    El-Bourawi M S, Ding Z, Ma R, Khayet M. A framework for better understanding membrane distillation separation process. Journal of Membrane Science, 2006, 285(1–2): 4–29

    CAS  Article  Google Scholar 

  32. 32.

    Gonzalez D, Amigo J, Suarez F. Membrane distillation: perspectives for sustainable and improved desalination. Renewable & Sustainable Energy Reviews, 2017, 80: 238–259

    Article  Google Scholar 

  33. 33.

    Deka B J, Guo J X, Khanzada N K, An A K. Omniphobic reentrant PVDF membrane with ZnO nanoparticles composite for desalination of low surface tension oily seawater. Water Research, 2019, 165: 114982

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Wang W, Du X W, Vahabi H, Zhao S, Yin Y M, Kota A K, Tong T Z. Trade-off in membrane distillation with monolithic omniphobic membranes. Nature Communications, 2019, 10(1): 3220

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Smolders K, Franken A. Terminology for membrane distillation. Desalination, 1989, 72(3): 249–262

    CAS  Article  Google Scholar 

  36. 36.

    Drioli E, Ali A, Macedonio F. Membrane distillation: recent developments and perspectives. Desalination, 2015, 356: 56–84

    CAS  Article  Google Scholar 

  37. 37.

    Kiss A A, Readi O M K. An industrial perspective on membrane distillation processes. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2018, 93(8): 2047–2055

    CAS  Article  Google Scholar 

  38. 38.

    Alsebaeai M K, Ahmad A L. Membrane distillation: progress in the improvement of dedicated membranes for enhanced hydrophobicity and desalination performance. Journal of Industrial and Engineering Chemistry, 2020, 86: 13–34

    CAS  Article  Google Scholar 

  39. 39.

    Hanemaaijer J H. Memstill®—low cost membrane distillation technology for seawater desalination. Desalination, 2004, 168: 355

    CAS  Article  Google Scholar 

  40. 40.

    Zhao K, Heinzl W, Wenzel M, Büttner S, Bollen F, Lange G, Heinzl S, Sarda N. Experimental study of the memsys vacuummulti-effect-membrane-distillation (V-MEMD) module. Desalination, 2013, 323: 150–160

    CAS  Article  Google Scholar 

  41. 41.

    Pouyfaucon A B, García-Rodríguez L. Solar thermal-powered desalination: a viable solution for a potential market. Desalination, 2018, 435: 60–69

    CAS  Article  Google Scholar 

  42. 42.

    Deshmukh A, Boo C, Karanikola V, Lin S H, Straub A P, Tong T Z, Warsinger D M, Elimelech M. Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. Energy & Environmental Science, 2018, 11(5): 1177–1196

    CAS  Article  Google Scholar 

  43. 43.

    Dai L M, Chang D W, Baek J B, Lu W. Carbon nanomaterials for advanced energy conversion and storage. Small, 2012, 8(8): 1130–1166

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Jariwala D, Sangwan V K, Lauhon L J, Marks T J, Hersam M C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chemical Society Reviews, 2013, 42(7): 2824–2860

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Bardhan N M. 30 years of advances in functionalization of carbon nanomaterials for biomedical applications: a practical review. Journal of Materials Research, 2017, 32(1): 107–127

    CAS  Article  Google Scholar 

  46. 46.

    Song Y S, Youn J R. Properties of epoxy nanocomposites filled with carbon nanomaterials. E-Polymers, 2004, 4(1), 80

    Article  Google Scholar 

  47. 47.

    Thines R K, Mubarak N M, Nizamuddin S, Sahu J N, Abdullah E C, Ganesan P. Application potential of carbon nanomaterials in water and wastewater treatment: a review. Journal of the Taiwan Institute of Chemical Engineers, 2017, 72: 116–133

    CAS  Article  Google Scholar 

  48. 48.

    Llobet E. Gas sensors using carbon nanomaterials: a review. Sensors and Actuators. B, Chemical, 2013, 179: 32–45

    CAS  Article  Google Scholar 

  49. 49.

    Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nature Communications, 2013, 4(1): 2390

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Hirsch A. The era of carbon allotropes. Nature Materials, 2010, 9 (11): 868–871

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Sholl D S, Lively R P. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Falcao E H L, Wudl F. Carbon allotropes: beyond graphite and diamond. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2007, 82(6): 524–531

    CAS  Article  Google Scholar 

  53. 53.

    Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Reich S, Li L, Robertson J. Control the chirality of carbon nanotubes by epitaxial growth. Chemical Physics Letters, 2006, 421(4–6): 469–472

    CAS  Article  Google Scholar 

  55. 55.

    Kroto H W, Allaf A W, Balm S P. C60—Buckminsterfullerene. Chemical Reviews, 1991, 91(6): 1213–1235

    CAS  Article  Google Scholar 

  56. 56.

    Svensson M, Zhang F L, Veenstra S C, Verhees W J H, Hummelen J C, Kroon J M, Inganas O, Andersson M R. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Advanced Materials, 2003, 15(12): 988–991

    CAS  Article  Google Scholar 

  57. 57.

    Coro J, Suarez M, Silva L S R, Eguiluz K I B, Salazar-Banda G R. Fullerene applications in fuel cells: a review. International Journal of Hydrogen Energy, 2016, 41(40): 17944–17959

    CAS  Article  Google Scholar 

  58. 58.

    Amorphous-carbon R J. Advances in Physics, 1986, 35(4): 317–374

    Article  Google Scholar 

  59. 59.

    Punetha V D, Rana S, Yoo H J, Chaurasia A, McLeskey J T, Ramasamy M S, Sahoo N G, Cho J W. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and graphene. Progress in Polymer Science, 2017, 67: 1–47

    CAS  Article  Google Scholar 

  60. 60.

    Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012, 335(6067): 442–444

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Boukhvalov D W, Katsnelson M I, Son Y W. Origin of anomalous water permeation through graphene oxide membrane. Nano Letters, 2013, 13(8): 3930–3935

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Yang T, Lin H, Loh K P, Jia B. Fundamental transport mechanisms and advancements of graphene oxide membranes for molecular separation. Chemistry of Materials, 2019, 31(6): 1829–1846

    CAS  Article  Google Scholar 

  63. 63.

    Hu M, Mi B. Enabling graphene oxide nanosheets as water separation membranes. Environmental Science & Technology, 2013, 47(8): 3715–3723

    CAS  Article  Google Scholar 

  64. 64.

    Vasu K, Prestat E, Abraham J, Dix J, Kashtiban R, Beheshtian J, Sloan J, Carbone P, Neek-Amal M, Haigh S. Van der Waals pressure and its effect on trapped interlayer molecules. Nature Communications, 2016, 7: 12168

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Wei N, Peng X, Xu Z. Understanding water permeation in graphene oxide membranes. ACS Applied Materials & Interfaces, 2014, 6(8): 5877–5883

    CAS  Article  Google Scholar 

  66. 66.

    Thomas J A, McGaughey A J. Reassessing fast water transport through carbon nanotubes. Nano Letters, 2008, 8(9): 2788–2793

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Majumder M, Chopra N, Andrews R, Hinds B J. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature, 2005, 438(7064): 44

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Secchi E, Marbach S, Niguès A, Stein D, Siria A, Bocquet L. Massive radius-dependent flow slippage in carbon nanotubes. Nature, 2016, 537(7619): 210

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Zhang H, Liu B, Kieu H T, Wu M S, Zhou K, Law A W K. Coarsegrained molecular dynamics study of membrane distillation through meso-size graphene channels. Journal of Membrane Science, 2018, 558: 34–44

    CAS  Article  Google Scholar 

  70. 70.

    Celebi K, Buchheim J, Wyss R M, Droudian A, Gasser P, Shorubalko I, Kye J I, Lee C, Park H G. Ultimate permeation across atomically thin porous graphene. Science, 2014, 344(6181): 289–292

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Strathmann H, Kock K. The formation mechanism of phase inversion membranes. Desalination, 1977, 21(3): 241–255

    CAS  Article  Google Scholar 

  72. 72.

    Menut P, Su Y, Chinpa W, Pochat-Bohatier C, Deratani A, Wang D, Huguet P, Kuo C, Lai J, Dupuy C. A top surface liquid layer during membrane formation using vapor-induced phase separation (VIPS)—evidence and mechanism of formation. Journal of Membrane Science, 2008, 310(1–2): 278–288

    CAS  Article  Google Scholar 

  73. 73.

    Park H C, Kim Y P, Kim H Y, Kang Y S. Membrane formation by water vapor induced phase inversion. Journal of Membrane Science, 1999, 156(2): 169–178

    Article  Google Scholar 

  74. 74.

    Smolders C, Reuvers A, Boom R, Wienk I. Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. Journal of Membrane Science, 1992, 73(2–3): 259–275

    CAS  Article  Google Scholar 

  75. 75.

    Woo Y C, Kim Y, Shim W G, Tijing L D, Yao M, Nghiem L D, Choi J S, Kim S H, Shon H K. Graphene/PVDF flat-sheet membrane for the treatment of RO brine from coal seam gas produced water by air gap membrane distillation. Journal of Membrane Science, 2016, 513: 74–84

    CAS  Article  Google Scholar 

  76. 76.

    Athanasekou C, Sapalidis A, Katris I, Savopoulou E, Beltsios K, Tsoufis T, Kaltzoglou A, Falaras P, Bounos G, Antoniou M, et al. Mixed matrix PVDF/graphene and composite-skin PVDF/graphene oxide membranes applied in membrane distillation. Polymer Engineering and Science, 2019, 59: E262–E278

    CAS  Article  Google Scholar 

  77. 77.

    Leaper S, Abdel-Karim A, Faki B, Luque-Alled J M, Alberto M, Vijayaraghavan A, Holmes S M, Szekely G, Badawy M I, Shokri N. Flux-enhanced PVDF mixed matrix membranes incorporating APTS-functionalized graphene oxide for membrane distillation. Journal of Membrane Science, 2018, 554: 309–323

    CAS  Article  Google Scholar 

  78. 78.

    Abdel-Karim A, Luque-Alled J M, Leaper S, Alberto M, Fan X, Vijayaraghavan A, Gad-Allah T A, El-Kalliny A S, Szekely G, Ahmed S I. PVDF membranes containing reduced graphene oxide: effect of degree of reduction on membrane distillation performance. Desalination, 2019, 452: 196–207

    CAS  Article  Google Scholar 

  79. 79.

    Ganesh B M, Isloor A M, Ismail A F. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination, 2013, 313: 199–207

    CAS  Article  Google Scholar 

  80. 80.

    Xu Z W, Zhang J G, Shan M J, Li Y L, Li B D, Niu J R, Zhou B M, Qian X M. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. Journal of Membrane Science, 2014, 458: 1–13

    CAS  Article  Google Scholar 

  81. 81.

    Ragunath S, Roy S, Mitra S. Carbon nanotube immobilized membrane with controlled nanotube incorporation via phase inversion polymerization for membrane distillation based desalination. Separation and Purification Technology, 2018, 194: 249–255

    CAS  Article  Google Scholar 

  82. 82.

    Fahmey M S, El-Aassar A H M, Abo-Elfadel M M, Orabi A S, Das R. Comparative performance evaluations of nanomaterials mixed polysulfone: a scale-up approach through vacuum enhanced direct contact membrane distillation for water desalination. Desalination, 2019, 451: 111–116

    CAS  Article  Google Scholar 

  83. 83.

    Bhadra M, Roy S, Mitra S. Nanodiamond immobilized membranes for enhanced desalination via membrane distillation. Desalination, 2014, 341: 115–119

    CAS  Article  Google Scholar 

  84. 84.

    Bhadra M, Roy S, Mitra S. Flux enhancement in direct contact membrane distillation by implementing carbon nanotube immobilized PTFE membrane. Separation and Purification Technology, 2016, 161: 136–143

    CAS  Article  Google Scholar 

  85. 85.

    Bhadra M, Roy S, Mitra S. Desalination across a graphene oxide membrane via direct contact membrane distillation. Desalination, 2016, 378: 37–43

    CAS  Article  Google Scholar 

  86. 86.

    Intrchom W, Roy S, Humoud M, Mitra S. Immobilization of graphene oxide on the permeate side of a membrane distillation membrane to enhance flux. Membranes, 2018, 8(3): 63

    PubMed Central  Article  CAS  Google Scholar 

  87. 87.

    Dumee L F, Sears K, Schutz J, Finn N, Huynh C, Hawkins S, Duke M, Gray S. Characterization and evaluation of carbon nanotube bucky-paper membranes for direct contact membrane distillation. Journal of Membrane Science, 2010, 351(1–2): 36–43

    CAS  Article  Google Scholar 

  88. 88.

    Seo D H, Pineda S, Woo Y C, Xie M, Murdock A T, Ang E Y M, Jiao Y, Park M J, Lim S I, Lawn M, et al. Anti-fouling graphene-based membranes for effective water desalination. Nature Communications, 2018, 9(1): 683

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  89. 89.

    Xu Z, Yan X, Du Z, Li J, Cheng F. Effect of oxygenic groups on desalination performance improvement of graphene oxide-based membrane in membrane distillation. Separation and Purification Technology, 2020, 251: 117304

    CAS  Article  Google Scholar 

  90. 90.

    Han M Y, Dong T, Hou D Y, Yao J M, Han L. Carbon nanotube based Janus composite membrane of oil fouling resistance for direct contact membrane distillation. Journal of Membrane Science, 2020, 607: 118078

    CAS  Article  Google Scholar 

  91. 91.

    Intrchom W, Roy S, Mitra S. Functionalized carbon nanotube immobilized membrane for low temperature ammonia removal via membrane distillation. Separation and Purification Technology, 2020, 235: 116188

    CAS  Article  Google Scholar 

  92. 92.

    Grasso G, Galiano F, Yoo M J, Mancuso R, Park H B, Gabriele B, Figoli A, Drioli E. Development of graphene-PVDF composite membranes for membrane distillation. Journal of Membrane Science, 2020, 604: 118017

    CAS  Article  Google Scholar 

  93. 93.

    Mao Y, Huang Q, Meng B, Zhou K, Liu G, Gugliuzza A, Drioli E, Jin W. Roughness-enhanced hydrophobic graphene oxide membrane for water desalination via membrane distillation. Journal of Membrane Science, 2020, 611: 118364

    CAS  Article  Google Scholar 

  94. 94.

    Formhals A. Process and apparatus for preparing artificial threads. US patent, 1 975 504, 1934-10-02

  95. 95.

    Formhals A. Artificial thread and method of producing same. US patent, 2 187 306, 1940-01-16

  96. 96.

    Formhals A. Production of artificial fibers from fiber forming liquids. US patent, 2 323 025, 1943-06-29

  97. 97.

    Formhals A. Method and apparatus for spinning. US patent, 2 349 950, 1944-05-30

  98. 98.

    Persano L, Camposeo A, Tekmen C, Pisignano D. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromolecular Materials and Engineering, 2013, 298(5): 504–520

    CAS  Article  Google Scholar 

  99. 99.

    Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Advanced Materials, 2004, 16(14): 1151–1170

    CAS  Article  Google Scholar 

  100. 100.

    Ahmed F E, Lalia B S, Hashaikeh R. A review on electrospinning for membrane fabrication: challenges and applications. Desalination, 2015, 356: 15–30

    CAS  Article  Google Scholar 

  101. 101.

    Tijing L D, Choi J S, Lee S, Kim S H, Shon H K. Recent progress of membrane distillation using electrospun nanofibrous membrane. Journal of Membrane Science, 2014, 453: 435–462

    CAS  Article  Google Scholar 

  102. 102.

    Woo Y C, Tijing L D, Shim W G, Choi J S, Kim S H, He T, Drioli E, Shon H K. Water desalination using graphene-enhanced electrospun nanofiber membrane via air gap membrane distillation. Journal of Membrane Science, 2016, 520: 99–110

    CAS  Article  Google Scholar 

  103. 103.

    Tijing L D, Woo Y C, Shim W G, He T, Choi J S, Kim S H, Shon H K. Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation. Journal of Membrane Science, 2016, 502: 158–170

    CAS  Article  Google Scholar 

  104. 104.

    Lee J G, Lee E J, Jeong S, Guo J X, An A K, Guo H, Kim J, Leiknes T, Ghaffour N. Theoretical modeling and experimental validation of transport and separation properties of carbon nanotube electrospun membrane distillation. Journal of Membrane Science, 2017, 526: 395–408

    CAS  Article  Google Scholar 

  105. 105.

    Sun M, Boo C, Shi W B, Rolf J, Shaulsky E, Cheng W, Plata D L, Qu J H, Elimelech M. Engineering carbon nanotube forest superstructure for robust thermal desalination membranes. Advanced Functional Materials, 2019, 29(36): 1903125

    Article  CAS  Google Scholar 

  106. 106.

    Bhaskar P, Bosworth L A, Wong R, O’Brien M A, Kriel H, Smit E, McGrouther D A, Wong J K, Cartmell S H. Cell response to sterilized electrospun poly(-caprolactone) scaffolds to aid tendon regeneration in vivo. Journal of Biomedical Materials Research. Part A, 2017, 105(2): 389–397

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Li K L, Zhang Y, Xu L L, Zeng F F, Hou D Y, Wang J. Optimizing stretching conditions in fabrication of PTFE hollow fiber membrane for performance improvement in membrane distillation. Journal of Membrane Science, 2018, 550: 126–135

    CAS  Article  Google Scholar 

  108. 108.

    Intrchom W, Roy S, Mitra S. Removal and recovery of methyl tertiary butyl ether (MTBE) from water using carbon nanotube and graphene oxide immobilized membranes. Nanomaterials (Basel, Switzerland), 2020, 10(3): 578

    CAS  Article  Google Scholar 

  109. 109.

    Mansour S, Giwa A, Hasan S W. Novel graphene nanoplateletscoated polyethylene membrane for the treatment of reject brine by pilot-scale direct contact membrane distillation: an optimization study. Desalination, 2018, 441: 9–20

    CAS  Article  Google Scholar 

  110. 110.

    Lee C L, Chen C H, Chen C W. Graphene nanosheets as ink particles for inkjet printing on flexible board. Chemical Engineering Journal, 2013, 230: 296–302

    CAS  Article  Google Scholar 

  111. 111.

    Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M, De S, Wang Z M, McGovern I T, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society, 2009, 131(10): 3611–3620

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Huang Y, Li H, Wang L, Qiao Y L, Tang C B, Jung C I, Yoon Y M, Li S G, Yu M. Ultrafiltration membranes with structure-optimized graphene-oxide coatings for antifouling oil/water separation. Advanced Materials Interfaces, 2015, 2(2): 1400433

    Article  CAS  Google Scholar 

  113. 113.

    Choi W, Choi J, Bang J, Lee J H. Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Applied Materials & Interfaces, 2013, 5(23): 12510–12519

    CAS  Article  Google Scholar 

  114. 114.

    Hegab H M, Zou L D. Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. Journal of Membrane Science, 2015, 484: 95–106

    CAS  Article  Google Scholar 

  115. 115.

    Koenig S P, Wang L D, Pellegrino J, Bunch J S. Selective molecular sieving through porous graphene. Nature Nanotechnology, 2012, 7(11): 728–732

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Morin A, Lucot D, Ouerghi A, Patriarche G, Bourhis E, Madouri A, Ulysse C, Pelta J, Auvray L, Jede R, et al. FIB carving of nanopores into suspended graphene films. Microelectronic Engineering, 2012, 97: 311–316

    CAS  Article  Google Scholar 

  117. 117.

    Nthunya L N, Gutierrez L, Lapeire L, Verbeken K, Zaouri N, Nxumalo E N, Mamba B B, Verliefde A R, Mhlanga S D. Foulingresistant PVDF nanofibre membranes for the desalination of brackish water in membrane distillation. Separation and Purification Technology, 2019, 228: 115793

    CAS  Article  Google Scholar 

  118. 118.

    Ahmed F E, Hilal N, Hashaikeh R. Electrically conductive membranes for in situ fouling detection in membrane distillation using impedance spectroscopy. Journal of Membrane Science, 2018, 556: 66–72

    CAS  Article  Google Scholar 

  119. 119.

    Dudchenko A V, Chen C, Cardenas A, Rolf J, Jassby D. Frequency-dependent stability of CNT joule heaters in ionizable media and desalination processes. Nature Nanotechnology, 2017, 12(6): 557–563

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Duan W Y, Ronen A, Walker S, Jassby D. Polyaniline-coated carbon nanotube ultrafiltration membranes: enhanced anodic stability for in situ cleaning and electro-oxidation processes. ACS Applied Materials & Interfaces, 2016, 8(34): 22574–22584

    CAS  Article  Google Scholar 

  121. 121.

    Liu H, Vajpayee A, Vecitis C D. Bismuth-doped tin oxide-coated carbon nanotube network: improved anode stability and efficiency for flow-through organic electrooxidation. ACS Applied Materials & Interfaces, 2013, 5(20): 10054–10066

    CAS  Article  Google Scholar 

  122. 122.

    Janas D, Kreft S K, Boncel S, Koziol K K K. Durability and surface chemistry of horizontally aligned CNT films as electrodes upon electrolysis of acidic aqueous solution. Journal of Materials Science, 2014, 49(20): 7231–7243

    CAS  Article  Google Scholar 

  123. 123.

    Dongare P D, Alabastri A, Pedersen S, Zodrow K R, Hogan N J, Neumann O, Wu J J, Wang T X, Deshmukh A, Elimelech M, et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6936–6941

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Jiang R B, Cheng S, Shao L, Ruan Q F, Wang J F. Mass-based photothermal comparison among gold nanocrystals, PbS nanocrystals, organic dyes, and carbon black. Journal of Physical Chemistry C, 2013, 117(17): 8909–8915

    CAS  Article  Google Scholar 

  125. 125.

    Yang K, Zhang S A, Zhang G X, Sun X M, Lee S T, Liu Z A. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters, 2010, 10(9): 3318–3323

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Robinson J T, Tabakman S M, Liang Y Y, Wang H L, Casalongue H S, Vinh D, Dai H J. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. Journal of the American Chemical Society, 2011, 133(17): 6825–6831

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the EPSRC for funding under the grant number EP/S032258/1. Sebastian Leaper would like to acknowledge EPSRC for funding this work through the NOWNANO CDT.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patricia Gorgojo.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commonslicence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leaper, S., Abdel-Karim, A. & Gorgojo, P. The use of carbon nanomaterials in membrane distillation membranes: a review. Front. Chem. Sci. Eng. (2021). https://doi.org/10.1007/s11705-020-1993-y

Download citation

Keywords

  • carbon nanomaterials
  • graphene
  • membrane distillation
  • desalination
  • carbon nanotubes